8 research outputs found
Recommended from our members
Absorption of laser light in overdense plasmas by sheath inverse bremsstrahlung
The original sheath inverse bremsstrahlung model [P. J. Catto and R. M. More, 1977] is modified by including the vxB term in the equation of motion. It is shown that the present results axe significantly different from those derived without the vxB term. The vxB term is also important in interpreting the absorption mechanism. If the vxB term were neglected, the absorption of the light would be incorrectly interpreted as an increase in the transverse electron temperature. This would violate the conservation of the transverse components of the canonical momentum, in the case of a normally incident laser light. It is also shown that both the sheath inverse bremsstrahlung and the anomalous skin effect are limiting cases of the same collisionless absorption mechanism. Finally, results from PIC plasma simulations are compared with the absorption coefficient calculated from the linear theory
Application of proton radiography in experiments of relevance to inertial confinement fusion
Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (Ia parts per thousand yen10(19) W/cm(2)) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum's interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic