381 research outputs found
Effects of stocking on genetics of wild brook trout populations
http://www.worldcat.org/oclc/1896394
Sculpins and crayfish in lake trout spawning areas in Lake Ontario: estimates of abundance and egg predation on lake trout eggs
ABSTRACT: Crayfish (Orconectes spp.) and sculpins (Cottus spp.) were collected at eight lake trout spawning reefs in Lake Ontari
Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival
1. Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g. at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design.
2. We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement and habitat use. Performance of variably spaced receiver grids (5â25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1â0.9 m/s; turning angle SD: 5â30°); (2) variable tag transmission intervals along each track (nominal delay: 15â300 s); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200â1,500 m). From simulations, we quantified (i) time between successive detections on any receiver (detection time), (ii) time between successive detections on different receivers (transit time), and (iii) distance between successive detections on different receivers (transit distance).
3. In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km, 5.7 days at 7 km and 15.2 days at 25 km grid spacing; for the 1,500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted.
4. By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids
A Hidden Markov Movement Model for rapidly identifying behavioral states from animal tracks
Electronic telemetry is frequently used to document animal movement through time. Methods that can identify underlying behaviors driving specific movement patterns can help us understand how and why animals use available space, thereby aiding conservation and management efforts. For aquatic animal tracking data with significant measurement error, a Bayesian stateâspace model called the firstâDifference Correlated Random Walk with Switching (DCRWS) has often been used for this purpose. However, for aquatic animals, highly accurate tracking data are now becoming more common. We developed a new hidden Markov model (HMM) for identifying behavioral states from animal tracks with negligible error, called the hidden Markov movement model (HMMM). We implemented as the basis for the HMMM the process equation of the DCRWS, but we used the method of maximum likelihood and the R package TMB for rapid model fitting. The HMMM was compared to a modified version of the DCRWS for highly accurate tracks, the DCRWS [Formula: see text] , and to a common HMM for animal tracks fitted with the R package moveHMM. We show that the HMMM is both accurate and suitable for multiple species by fitting it to real tracks from a grey seal, lake trout, and blue shark, as well as to simulated data. The HMMM is a fast and reliable tool for making meaningful inference from animal movement data that is ideally suited for ecologists who want to use the popular DCRWS implementation and have highly accurate tracking data. It additionally provides a groundwork for development of more complex modeling of animal movement with TMB. To facilitate its uptake, we make it available through the R package swim
Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival
1. Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g. at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design.
2. We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement and habitat use. Performance of variably spaced receiver grids (5â25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1â0.9 m/s; turning angle SD: 5â30°); (2) variable tag transmission intervals along each track (nominal delay: 15â300 s); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200â1,500 m). From simulations, we quantified (i) time between successive detections on any receiver (detection time), (ii) time between successive detections on different receivers (transit time), and (iii) distance between successive detections on different receivers (transit distance).
3. In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km, 5.7 days at 7 km and 15.2 days at 25 km grid spacing; for the 1,500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted.
4. By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids
Evidence of sound production by spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain
Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings with behavioral data collected using acoustic telemetry and video. These sounds were named âgrowlsâ and âsnapsâ and were heard on lake trout spawning reefs, but not on a nonspawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the prespawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors: growls when males were quivering and parallel swimming and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis Ă Salvelinus namaycush hybrid) provides rare evidence for spawning-related sound production by a salmonid or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control
Temporal instability of lake charr phenotypes: synchronicity of growth rates and morphology linked to environmental variables
Pathways through which phenotypic variation among individuals arise can be complex. One assumption often made in relation to intraspecific diversity is that the stability or predictability of the environment will interact with expression of the underlying phenotypic variation. To address biological complexity below the species level, we investigated variability across years in morphology and annual growth increments between and within two sympatric lake charr Salvelinus namaycush ecotypes in Rush Lake, USA. A rapid phenotypic shift in body and head shape was found within a decade. The magnitude and direction of the observed phenotypic change was consistent in both ecotypes, which suggests similar pathways caused the variation over time. Over the same time period, annual growth increments declined for both lake charr ecotypes and corresponded with a consistent phenotypic shift of each ecotype. Despite ecotypeâspecific annual growth changes in response to winter conditions, the observed annual growth shift for both ecotypes was linked, to some degree, with variation in the environment. Particularly, a declining trend in regional cloud cover was associated with an increase of early stage (ages 1â3) annual growth for lake charr of Rush Lake. Underlying mechanisms causing changes in growth rates and constrained morphological modulation are not fully understood. An improved knowledge of the biology hidden within the expression of phenotypic variation promises to clarify our understanding of temporal morphological diversity and instability
Planning for Sustainability in Small Municipalities: The Influence of Interest Groups, Growth Patterns, and Institutional Characteristics
How and why small municipalities promote sustainability through planning efforts is poorly understood. We analyzed ordinances in 451 Maine municipalities and tested theories of policy adoption using regression analysis.We found that smaller communities do adopt programs that contribute to sustainability relevant to their scale and context. In line with the political market theory, we found that municipalities with strong environmental interests, higher growth, and more formal governments were more likely to adopt these policies. Consideration of context and capacity in planning for sustainability will help planners better identify and benefit from collaboration, training, and outreach opportunities
- âŠ