776 research outputs found

    Alfvénic wave heating of the upper chromosphere in flares

    Get PDF
    We have developed a numerical model of flare heating due to the dissipation of Alfv\'enic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfv\'enic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfv\'enic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.Comment: Accepted to ApJ

    NuSTAR observation of a minuscule microflare in a solar active region

    Get PDF
    We present X-ray imaging spectroscopy of one of the weakest active region (AR) microflares ever studied. The microflare occurred at ∼11:04 UT on 2018 September 9 and we studied it using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). The microflare is observed clearly in 2.5-7 keV with NuSTAR and in Fe XVIII emission derived from the hotter component of the 94 Å SDO/AIA channel. We estimate the event to be three orders of magnitude lower than a GOES A class microflare with an energy of 1.1e26 erg. It reaches temperatures of 6.7 MK with an emission measure of 8.0e43 cm^−3. Non-thermal emission is not detected but we instead determine upper limits to such emission. We present the lowest thermal energy estimate for an AR microflare in literature, which is at the lower limits of what is still considered an X-ray microflare

    Penetrating particle ANalyzer (PAN)

    Full text link
    PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles (>∼> \sim100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Noise storm continua: power estimates for electron acceleration

    Full text link
    We use a generic stochastic acceleration formalism to examine the power LinL_{\rm in} (ergs−1{\rm erg s^{-1}}) input to nonthermal electrons that cause noise storm continuum emission. The analytical approach includes the derivation of the Green's function for a general second-order Fermi process, and its application to obtain the particular solution for the nonthermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare LinL_{\rm in} with the power LoutL_{\rm out} observed in noise storm radiation. Using typical values for the various parameters, we find that Lin∼1023−26L_{\rm in} \sim 10^{23-26} ergs−1{\rm erg s^{-1}}, yielding an efficiency estimate η≡Lout/Lin\eta \equiv L_{\rm out}/L_{\rm in} in the range 10^{-10} \lsim \eta \lsim 10^{-6} for this nonthermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic

    Numerical Simulation of an EUV Coronal Wave Based on the February 13, 2009 CME Event Observed by STEREO

    Full text link
    On 13 February 2009, a coronal wave -- CME -- dimming event was observed in quadrature by the STEREO spacecraft. We analyze this event using a three-dimensional, global magnetohydrodynamic (MHD) model for the solar corona. The numerical simulation is driven and constrained by the observations, and indicates where magnetic reconnection occurs between the expanding CME core and surrounding environment. We focus primarily on the lower corona, extending out to 3R⊙3R_{\odot}; this range allows simultaneous comparison with both EUVI and COR1 data. Our simulation produces a diffuse coronal bright front remarkably similar to that observed by STEREO/EUVI at 195 \AA. It is made up of \emph{two} components, and is the result of a combination of both wave and non-wave mechanisms. The CME becomes large-scale quite low (<< 200 Mm) in the corona. It is not, however, an inherently large-scale event; rather, the expansion is facilitated by magnetic reconnection between the expanding CME core and the surrounding magnetic environment. In support of this, we also find numerous secondary dimmings, many far from the initial CME source region. Relating such dimmings to reconnecting field lines within the simulation provides further evidence that CME expansion leads to the "opening" of coronal field lines on a global scale. Throughout the CME expansion, the coronal wave maps directly to the CME footprint. Our results suggest that the ongoing debate over the "true" nature of diffuse coronal waves may be mischaracterized. It appears that \emph{both} wave and non-wave models are required to explain the observations and understand the complex nature of these events
    • …
    corecore