7 research outputs found
One-dimensional Bose-Einstein condensation of photons in a microtube
This paper introduces a quasiequilibrium one-dimensional Bose-Einstein condensation of photons trapped in a microtube. Light modes with a cutoff frequency (a photon's "mass") interact through different processes of absorption, emission, and scattering on molecules and atoms. In this paper we study the conditions for the one-dimensional condensation of light and the role of photon-photon interactions in the system. The technique in use is the Matsubara Green's functions formalism modified for the quasiequilibrium system under study
Moire Flat Bands in Twisted Double Bilayer Graphene
We investigate twisted double bilayer graphene (TDBG), a four-layer system composed of two AB-stacked graphene bilayers rotated with respect to each other by a small angle. Our ab initio band structure calculations reveal a considerable energy gap at the charge-neutrality point that we assign to the intrinsic symmetric polarization (ISP). We then introduce the ISP effect into the tight-binding parametrization and perform calculations on TDBG models that include lattice relaxation effects down to very small twist angles. We identify a narrow region around the magic angle characterized by a manifold of remarkably flat bands gapped out from other states even without external electric fields. To understand the fundamental origin of the magic angle in TDBG, we construct a continuum model that points to a hidden mathematical link to the twisted bilayer graphene model, thus indicating that the band flattening is a fundamental feature of TDBG and is not a result of external fields