311 research outputs found

    On the structure of non-full-rank perfect codes

    Full text link
    The Krotov combining construction of perfect 1-error-correcting binary codes from 2000 and a theorem of Heden saying that every non-full-rank perfect 1-error-correcting binary code can be constructed by this combining construction is generalized to the qq-ary case. Simply, every non-full-rank perfect code CC is the union of a well-defined family of μ\mu-components KμK_\mu, where μ\mu belongs to an "outer" perfect code CC^*, and these components are at distance three from each other. Components from distinct codes can thus freely be combined to obtain new perfect codes. The Phelps general product construction of perfect binary code from 1984 is generalized to obtain μ\mu-components, and new lower bounds on the number of perfect 1-error-correcting qq-ary codes are presented.Comment: 8 page

    Photon storage in Lambda-type optically dense atomic media. IV. Optimal control using gradient ascent

    Get PDF
    We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage in Lambda-type media to previously inaccessible regimes and to provide simple intuitive explanations for our optimization techniques. In particular, by using gradient ascent to shape classical control pulses used to mediate photon storage, we open up the possibility of high efficiency photon storage in the non-adiabatic limit, in which analytical solutions to the equations of motion do not exist. This control shaping technique enables an order-of-magnitude increase in the bandwidth of the memory. We also demonstrate that the often discussed connection between time reversal and optimality in photon storage follows naturally from gradient ascent. Finally, we discuss the optimization of controlled reversible inhomogeneous broadening.Comment: 16 pages, 7 figures. V2: As published in Phys. Rev. A. Moved most of the math to appendices or removed altogether. Switched order of Sections II and III. Shortened abstract. Added reference

    Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    Get PDF
    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism

    Photon storage in Lambda-type optically dense atomic media. I. Cavity model

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we perform the same analysis for the cavity model. In particular, we show that the retrieval efficiency is equal to C/(1+C) independent of the retrieval technique, where C is the cooperativity parameter. We also derive the optimal strategy for storage and, in particular, demonstrate that at any detuning one can store, with the optimal efficiency of C/(1+C), any smooth input mode satisfying T C gamma >> 1 and a certain class of resonant input modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2 gamma is the transition linewidth. In the two subsequent papers of the series, we present the full analysis of the free-space model and discuss the effects of inhomogeneous broadening on photon storage.Comment: 16 pages, 2 figures. V2: significant changes in presentation, new references, higher resolution of figure

    Photon storage in Lambda-type optically dense atomic media. II. Free-space model

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new references, higher resolution of figure

    Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI

    Get PDF
    Spasticity, a common complication after spinal cord injury (SCI), is frequently accompanied by chronic pain. The physiological origin of this pain (critical to its treatment) remains unknown, although spastic motor dysfunction has been related to the hyperexcitability of motoneurons and to changes in spinal sensory processing. Here we show that the pain mechanism involves changes in sensory circuits of the dorsal horn (DH) where nociceptive inputs integrate for pain processing. Spasticity is associated with the DH hyperexcitability resulting from an increase in excitation and disinhibition occurring in two respective types of sensory interneurons. In the tonic-firing inhibitory lamina II interneurons, glutamatergic drive was reduced while glycinergic inhibition was potentiated. In contrast, excitatory drive was boosted to the adapting-firing excitatory lamina II interneurons while GABAergic and glycinergic inhibition were reduced. Thus, increased activity of excitatory DH interneurons coupled with the reduced excitability of inhibitory DH interneurons post-SCI could provide a neurophysiological mechanism of central sensitization and chronic pain associated with spasticity

    Experimental investigation of the role of thyrocalcitonin in the prophylaxis of disturbances in the water-salt and mineral metabolism during a 30-day hypokinesia

    Get PDF
    The effect of thyrocalcitonin (TCT) injections on the metabolism of water and electrolytes in free-moving and immobilized chinchilla hares is described. Calcium excretion from immobilized animals was elevated, but normalized in those also receiving TCT injections. TCT also normalized water content and excretion rates

    Speeding up critical system dynamics through optimized evolution

    Full text link
    The number of defects which are generated on crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is Tπ/ΔT\sim \pi/\Delta, where Δ\Delta is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s=TΔs=T\Delta.Comment: 6 pages, 6 figure
    corecore