311 research outputs found
On the structure of non-full-rank perfect codes
The Krotov combining construction of perfect 1-error-correcting binary codes
from 2000 and a theorem of Heden saying that every non-full-rank perfect
1-error-correcting binary code can be constructed by this combining
construction is generalized to the -ary case. Simply, every non-full-rank
perfect code is the union of a well-defined family of -components
, where belongs to an "outer" perfect code , and these
components are at distance three from each other. Components from distinct
codes can thus freely be combined to obtain new perfect codes. The Phelps
general product construction of perfect binary code from 1984 is generalized to
obtain -components, and new lower bounds on the number of perfect
1-error-correcting -ary codes are presented.Comment: 8 page
Photon storage in Lambda-type optically dense atomic media. IV. Optimal control using gradient ascent
We use the numerical gradient ascent method from optimal control theory to
extend efficient photon storage in Lambda-type media to previously inaccessible
regimes and to provide simple intuitive explanations for our optimization
techniques. In particular, by using gradient ascent to shape classical control
pulses used to mediate photon storage, we open up the possibility of high
efficiency photon storage in the non-adiabatic limit, in which analytical
solutions to the equations of motion do not exist. This control shaping
technique enables an order-of-magnitude increase in the bandwidth of the
memory. We also demonstrate that the often discussed connection between time
reversal and optimality in photon storage follows naturally from gradient
ascent. Finally, we discuss the optimization of controlled reversible
inhomogeneous broadening.Comment: 16 pages, 7 figures. V2: As published in Phys. Rev. A. Moved most of
the math to appendices or removed altogether. Switched order of Sections II
and III. Shortened abstract. Added reference
Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia
Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism
Photon storage in Lambda-type optically dense atomic media. I. Cavity model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
used a universal physical picture to optimize and demonstrate equivalence
between a wide range of techniques for storage and retrieval of photon wave
packets in Lambda-type atomic media in free space, including the adiabatic
reduction of the photon group velocity, pulse-propagation control via
off-resonant Raman techniques, and photon-echo-based techniques. In the present
paper, we perform the same analysis for the cavity model. In particular, we
show that the retrieval efficiency is equal to C/(1+C) independent of the
retrieval technique, where C is the cooperativity parameter. We also derive the
optimal strategy for storage and, in particular, demonstrate that at any
detuning one can store, with the optimal efficiency of C/(1+C), any smooth
input mode satisfying T C gamma >> 1 and a certain class of resonant input
modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2
gamma is the transition linewidth. In the two subsequent papers of the series,
we present the full analysis of the free-space model and discuss the effects of
inhomogeneous broadening on photon storage.Comment: 16 pages, 2 figures. V2: significant changes in presentation, new
references, higher resolution of figure
Photon storage in Lambda-type optically dense atomic media. II. Free-space model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
presented a universal physical picture for describing a wide range of
techniques for storage and retrieval of photon wave packets in Lambda-type
atomic media in free space, including the adiabatic reduction of the photon
group velocity, pulse-propagation control via off-resonant Raman techniques,
and photon-echo based techniques. This universal picture produced an optimal
control strategy for photon storage and retrieval applicable to all approaches
and yielded identical maximum efficiencies for all of them. In the present
paper, we present the full details of this analysis as well some of its
extensions, including the discussion of the effects of non-degeneracy of the
two lower levels of the Lambda system. The analysis in the present paper is
based on the intuition obtained from the study of photon storage in the cavity
model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new
references, higher resolution of figure
Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI
Spasticity, a common complication after spinal cord injury (SCI), is frequently accompanied by chronic pain. The physiological origin of this pain (critical to its treatment) remains unknown, although spastic motor dysfunction has been related to the hyperexcitability of motoneurons and to changes in spinal sensory processing. Here we show that the pain mechanism involves changes in sensory circuits of the dorsal horn (DH) where nociceptive inputs integrate for pain processing. Spasticity is associated with the DH hyperexcitability resulting from an increase in excitation and disinhibition occurring in two respective types of sensory interneurons. In the tonic-firing inhibitory lamina II interneurons, glutamatergic drive was reduced while glycinergic inhibition was potentiated. In contrast, excitatory drive was boosted to the adapting-firing excitatory lamina II interneurons while GABAergic and glycinergic inhibition were reduced. Thus, increased activity of excitatory DH interneurons coupled with the reduced excitability of inhibitory DH interneurons post-SCI could provide a neurophysiological mechanism of central sensitization and chronic pain associated with spasticity
Experimental investigation of the role of thyrocalcitonin in the prophylaxis of disturbances in the water-salt and mineral metabolism during a 30-day hypokinesia
The effect of thyrocalcitonin (TCT) injections on the metabolism of water and electrolytes in free-moving and immobilized chinchilla hares is described. Calcium excretion from immobilized animals was elevated, but normalized in those also receiving TCT injections. TCT also normalized water content and excretion rates
Speeding up critical system dynamics through optimized evolution
The number of defects which are generated on crossing a quantum phase
transition can be minimized by choosing properly designed time-dependent
pulses. In this work we determine what are the ultimate limits of this
optimization. We discuss under which conditions the production of defects
across the phase transition is vanishing small. Furthermore we show that the
minimum time required to enter this regime is , where
is the minimum spectral gap, unveiling an intimate connection between
an optimized unitary dynamics and the intrinsic measure of the Hilbert space
for pure states. Surprisingly, the dynamics is non-adiabatic, this result can
be understood by assuming a simple two-level dynamics for the many-body system.
Finally we classify the possible dynamical regimes in terms of the action
.Comment: 6 pages, 6 figure
- …