5 research outputs found

    Regulation of Platelet-Derived ADAM17: A Biomarker Approach for Breast Cancer?

    No full text
    Tumor progression and metastasis are critically dependent on the tumor microenvironment. A disintegrin and metalloproteinase 17 (ADAM17) is associated with shedding of several substrates involved in tumor progression and known to be expressed by platelets of healthy donors and patients with solid tumors. Here, we report that platelet-derived ADAM17 (pADAM17) is regulated upon platelet activation of breast cancer patients, but not of healthy individuals. The observed downregulation of pADAM17 on platelets of cancer patients correlated with clinical parameters related to tumor progression including tumor stage and the occurrence of metastasis. Our data identify an association between platelet activation, modulation of platelet-derived ADAM17, and metastasis. In conclusion, we demonstrate that further development of pADAM17 as a liquid biomarker is warranted for monitoring disease progression in breast cancer

    Platelet-expressed immune checkpoint regulator GITRL in breast cancer

    No full text
    Owing to their key role in several diseases including cancer, activating and inhibitory immune checkpoint molecules are increasingly exploited as targets for immunotherapy. Recently, we demonstrated that platelets, which largely influence tumor progression and immune evasion, functionally express the ligand of the checkpoint molecule GITR. This immunoreceptor modulates effector functions of T cells and NK cells with its function varying dependent on cellular context and activation state. Here, we provide a comparative analysis of platelet-derived GITRL (pGITRL) in breast cancer patients and healthy volunteers. The levels of pGITRL were found to be higher on platelets derived from cancer patients and appeared to be specifically regulated during tumor progression as exemplified by several clinical parameters including tumor stage/grade, the occurrence of metastases and tumor proliferation (Ki67) index. In addition, we report that pGITRL is upregulated during platelet maturation and particularly induced upon exposure to tumor-derived soluble factors. Our data indicate that platelets modulate the GITR/GITRL immune checkpoint in the context of malignant disease and provide a rationale to further study the GITR/GITRL axis for exploitation for immunotherapeutic intervention in cancer patients. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00262-021-02866-y) contains supplementary material, which is available to authorized users

    Controversial Role of the Immune Checkpoint OX40L Expression on Platelets in Breast Cancer Progression

    No full text
    In conventional T cells, OX40 has been identified as a major costimulating receptor augmenting survival and clonal expansion of effector and memory T cell populations. In regulatory T cells, (Treg) OX40 signaling suppresses cellular activity and differentiation. However, clinical trials investigating OX40 agonists to enhance anti-tumor immunity, showed only limited success so far. Here we show that platelets from breast cancer patients express relevant levels of OX40L and platelet OX40L (pOX40L) inversely correlates with platelet-expressed immune checkpoint molecules GITRL (pGITRL) and TACI (pTACI). While high expression of pOX40L correlates with T and NK cell activation, elevated pOX40L levels identify patients with higher tumor grades, the occurrence of metastases, and shorter recurrence-free survival (RFS). Of note, OX40 mRNA levels in breast cancer correlate with enhanced expression of anti-apoptotic, immune-suppressive, and tumor-promoting mRNA gene signatures. Our data suggest that OX40L on platelets might play counteracting roles in cancer and anti-tumor immunity. Since pOX40L reflects disease relapse better than the routinely used predictive markers CA15-3, CEA, and LDH, it could serve as a novel biomarker for refractory disease in breast cancer
    corecore