33 research outputs found
The Global Omnivore: Identifying Musical Taste Groups in Austria, England, Israel and Serbia
This research offers a unique opportunity to revisit the omnivore hypothesis under a unified method of cross-national analysis. To accomplish this, we interpret omnivourism as a special case of cultural eclecticism (Ollivier, 2008; Ollivier, Gauthier and Truong, 2009). Our methodological approach incorporates the simultaneous analysis of locally produced and globally known musical genres. Its objective is to verify whether cultural omnivourism is a widespread phenomenon, and to determine to what extent any conclusions can be generalised across countries with different social structures and different levels of cultural openness. To truly understand the scope of the omnivourism hypothesis, we argue that it is essential to perform a cross-national comparison to test the hypothesis within a range of social, political and cultural contexts, and a reflection of different historical and cultural repertoires (Lamont, 1992)
The politics of performance: transnationalism and its limits in former Yugoslav popular music, 1999–2004
This paper examines transnational relations between the Yugoslav successor states from the point of view of popular music, and demonstrates how transnational musical figures (such as Djordje Balaševi?, Mom?ilo Bajagi?-Bajaga and Ceca Ražnatovi?) are interpreted as symbolic reference points in national ethnopolitical discourse in the process of identity construction. Another symbolic function is served by Serbian turbofolk artists, who in Croatia serve as a cultural resource to distance oneself from a musical genre associated by many urban Croats with the ruralization (and Herzegovinization) of Croatian city space. In addition, value judgements associated with both Serbian and Croatian newly composed folk music provide an insight into the transnational negotiation of conflicting identities in the ex-Yugoslav context. Ultimately the paper shows how the ethnonational boundaries established by nationalizing ideologies created separate cultural spaces which themselves have been transnationalized after Yugoslavia's disintegration
Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I
Classification and function of small open reading frames
Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease
Ribosome profiling reveals the what, when, where and how of protein synthesis
Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products
Microtubule motility on reconstituted meiotic chromatin
SummaryDuring cell division, correct positioning of chromosomes in mitotic and meiotic spindles depends on interactions of microtubules with kinetochores and, especially in higher eukaryotes, with the chromosome arms [1, 2]. Chromokinesins, highly concentrated on mitotic and meiotic chromatin, are thought to actively push the chromosome arms toward the spindle center, thereby contributing to chromosome alignment at the metaphase plate in early mitosis [1–9]. How many distinct classes of chromokinesins exist and how they cooperate to form a motile chromatin-microtubule interface are not known. Using a novel experimental assay with nonkinetochore chromatin reconstituted from Xenopus egg extract, we demonstrate that the microtubule motility generated on chromatin is continuous and plus-end directed. Using specific antibody depletions, we identify two distinct chromokinesins, kinesin-10 (Xkid) [8, 10, 11] and kinesin-4 (Xklp1) [12, 13], as the major activities mediating the interaction of meiotic chromatin with microtubules. Interestingly, we find that the slower motor, kinesin-10, more efficiently recruits microtubules and also dominates in collective microtubule transport both in the close-to-physiological environment of chromatin and also in a minimal in vitro assay. Our results provide an identification of the molecular activities involved in the generation of motor protein-mediated chromosome arm motility and yield mechanistic insight into the cooperation of the two major chromokinesins
XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract
In metaphase Xenopus egg extracts, global microtubule growth is mainly promoted by two unrelated microtubule stabilizers, end-binding protein 1 (EB1) and XMAP215. Here, we explore their role and potential redundancy in the regulation of spindle assembly and function. We find that at physiological expression levels, both proteins are required for proper spindle architecture: Spindles assembled in the absence of EB1 or at decreased XMAP215 levels are short and frequently multipolar. Moreover, the reduced density of microtubules at the equator of ΔEB1 or ΔXMAP215 spindles leads to faulty kinetochore–microtubule attachments. These spindles also display diminished poleward flux rates and, upon anaphase induction, they neither segregate chromosomes nor reorganize into interphasic microtubule arrays. However, EB1 and XMAP215 nonredundantly regulate spindle assembly because an excess of XMAP215 can compensate for the absence of EB1, whereas the overexpression of EB1 cannot substitute for reduced XMAP215 levels. Our data indicate that EB1 could positively regulate XMAP215 by promoting its binding to the microtubules. Finally, we show that disruption of the mitosis-specific XMAP215–EB1 interaction produces a phenotype similar to that of either EB1 or XMAP215 depletion. Therefore, the XMAP215–EB1 interaction is required for proper spindle organization and chromosome segregation in Xenopus egg extracts