19 research outputs found
Ultracold quantum gases in triangular optical lattices
Over the last years the exciting developments in the field of ultracold atoms
confined in optical lattices have led to numerous theoretical proposals devoted
to the quantum simulation of problems e.g. known from condensed matter physics.
Many of those ideas demand for experimental environments with non-cubic lattice
geometries. In this paper we report on the implementation of a versatile
three-beam lattice allowing for the generation of triangular as well as
hexagonal optical lattices. As an important step the superfluid-Mott insulator
(SF-MI) quantum phase transition has been observed and investigated in detail
in this lattice geometry for the first time. In addition to this we study the
physics of spinor Bose-Einstein condensates (BEC) in the presence of the
triangular optical lattice potential, especially spin changing dynamics across
the SF-MI transition. Our results suggest that below the SF-MI phase
transition, a well-established mean-field model describes the observed data
when renormalizing the spin-dependent interaction. Interestingly this opens new
perspectives for a lattice driven tuning of a spin dynamics resonance occurring
through the interplay of quadratic Zeeman effect and spin-dependent
interaction. We finally discuss further lattice configurations which can be
realized with our setup.Comment: 19 pages, 7 figure
Physics with Coherent Matter Waves
This review discusses progress in the new field of coherent matter waves, in
particular with respect to Bose-Einstein condensates. We give a short
introduction to Bose-Einstein condensation and the theoretical description of
the condensate wavefunction. We concentrate on the coherence properties of this
new type of matter wave as a basis for fundamental physics and applications.
The main part of this review treats various measurements and concepts in the
physics with coherent matter waves. In particular we present phase manipulation
methods, atom lasers, nonlinear atom optics, optical elements, interferometry
and physics in optical lattices. We give an overview of the state of the art in
the respective fields and discuss achievements and challenges for the future
Spin-Nematic Squeezed Vacuum in a Quantum Gas
Using squeezed states it is possible to surpass the standard quantum limit of
measurement uncertainty by reducing the measurement uncertainty of one property
at the expense of another complementary property. Squeezed states were first
demonstrated in optical fields and later with ensembles of pseudo spin-1/2
atoms using non-linear atom-light interactions. Recently, collisional
interactions in ultracold atomic gases have been used to generate a large
degree of quadrature spin squeezing in two-component Bose condensates. For
pseudo spin-1/2 systems, the complementary properties are the different
components of the total spin vector , which fully characterize the state on
an SU(2) Bloch sphere. Here, we measure squeezing in a spin-1 Bose condensate,
an SU(3) system, which requires measurement of the rank-2 nematic or quadrupole
tensor as well to fully characterize the state. Following a quench
through a nematic to ferromagnetic quantum phase transition, squeezing is
observed in the variance of the quadratures up to -8.3(-0.7 +0.6) dB
(-10.3(-0.9 +0.7) dB corrected for detection noise) below the standard quantum
limit. This spin-nematic squeezing is observed for negligible occupation of the
squeezed modes and is analogous to optical two-mode vacuum squeezing. This work
has potential applications to continuous variable quantum information and
quantum-enhanced magnetometry
Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques
The aim of the present review is to introduce the reader to some of the
physical notions and of the mathematical methods that are relevant to the study
of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the
general framework, we discuss the prototypical models that are relevant to this
setting for different dimensions and different potentials confining the atoms.
We analyze some of the model properties and explore their typical wave
solutions (plane wave solutions, bright, dark, gap solitons, as well as
vortices). We then offer a collection of mathematical methods that can be used
to understand the existence, stability and dynamics of nonlinear waves in such
BECs, either directly or starting from different types of limits (e.g., the
linear or the nonlinear limit, or the discrete limit of the corresponding
equation). Finally, we consider some special topics involving more recent
developments, and experimental setups in which there is still considerable need
for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new
references added, fixed typo
Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network
Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10−17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks
Test of special relativity using a fiber network of optical clocks
Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson–Mansouri–Sexl parameter |α| 1.1 × 10 −8 quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives–Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future