1,952 research outputs found
Exploring Alternative Systems of Classification
Classification involves the development of a system of naming clades that can represent evolutionary relationships accurately and concisely. Using the acid-loving heath plants (Ericales) as an example, one can explore the application of different classification methods. The Linnean system of naming retains the traditional hierarchical framework (named ranks) and allows for the application of many cuqently used names. The phylogenetic systematic approach recommends the removal of an absolute hierarchy but allows retention of traditionally used endings such as -aceae. Historical usage of these names can lead to confusion when the names are used within a discussion or text, especially when a cladogram is not presented at the same time. Another method is suggested that removes the Linnean endings and adds the same ending (ina) to all clade names. This effectively eliminates absolute rank and clearly indicates that the group name represents a clade. The names used in this method and the phylogenetic systematic method do not indicate relative rank. Numbering systems and indentation are two ways in which relative rank has been conveyed. Indented lists have been the preferred method, often in combination with suffixes that indicate absolute rank. If absolute rank is eliminated, relative rank can still be reflected by indentation as in the phylogenetic systematic method. Relative rank can be conveyed by always presenting a cladogram in conjunction with a classification. In practice, relative rank is also effectively communicated within the context of discussion, thus a precise system of indicating relative rank within a formal classification may not be necessary
Internal Motility in Stiffening Actin-Myosin Networks
We present a study on filamentous actin solutions containing heavy meromyosin
subfragments of myosin II motor molecules. We focus on the viscoelastic phase
behavior and internal dynamics of such networks during ATP depletion. Upon
simultaneously using micro-rheology and fluorescence microscopy as
complementary experimental tools, we find a sol-gel transition accompanied by a
sudden onset of directed filament motion. We interpret the sol-gel transition
in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain
the filament motion in the vicinity of the sol-gel transition.Comment: 4 pages, 3 figure
The Luminosity Function for L>L* Galaxies at z > 3
Through use of multiband (U, B, R, I) photometry we have isolated high
redshift (3.0<z<3.5) galaxy candidates in a survey of 1.27 deg^2 to R = 21.25
and a survey of 0.02 deg^2 to R = 23.5. Our pool of candidates constrains the
nature of the 3.0 < z < 3.5 luminosity function over the range L* < L < 100 L*,
if we grant a similar level of completeness to these data as for very faint
samples (to R = 25.5) selected in a similar fashion. Our constraints agree with
the high redshift sky density at R = 20.5 estimated from Yee et al.'s (1996)
serendipitous discovery of a bright, z = 2.7 galaxy, as well as the density at
R ~ 23 by Steidel et al. (1996b). We strongly rule out -- by more than two
orders of magnitude at M(R) = -25 -- the L > L* luminosity function for z = 3-5
galaxies obtained by a photometric redshift analysis of the Hubble Deep Field
(HDF) by Gwyn & Hartwick (1996). Our results at R ~ 23 are more consistent with
the photometric redshift analysis of the faint HDF galaxies by Sawicki & Yee
(1996), but our present upper limits at the brightest magnitudes (R < 21.5,
M(R) < -24) allow more generous volume densities of these super-L* galaxies.Comment: Accepted for publication in ApJ Letters; 14 pages Latex, including 3
figure
Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks
Currently, a shift from classical flood protection as engineering task towards integrated flood risk management concepts can be observed. In this context, a more consequent consideration of extreme events which exceed the design event of flood protection structures and failure scenarios such as dike breaches have to be investigated. Therefore, this study aims to enhance existing methods for hazard and risk assessment for extreme events and is divided into three parts. In the first part, a regionalization approach for flood peak discharges was further developed and substantiated, especially regarding recurrence intervals of 200 to 10 000 years and a large number of small ungauged catchments. Model comparisons show that more confidence in such flood estimates for ungauged areas and very long recurrence intervals may be given as implied by statistical analysis alone. The hydraulic simulation in the second part is oriented towards hazard mapping and risk analyses covering the whole spectrum of relevant flood events. As the hydrodynamic simulation is directly coupled with a GIS, the results can be easily processed as local inundation depths for spatial risk analyses. For this, a new GIS-based software tool was developed, being presented in the third part, which enables estimations of the direct flood damage to single buildings or areas based on different established stage-damage functions. Furthermore, a new multifactorial approach for damage estimation is presented, aiming at the improvement of damage estimation on local scale by considering factors like building quality, contamination and precautionary measures. The methods and results from this study form the base for comprehensive risk analyses and flood management strategies
Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy
The next generation of spectroscopic surveys will have a wealth of
photometric data available for use in target selection. Selecting the best
targets is likely to be one of the most important hurdles in making these
spectroscopic campaigns as successful as possible. Our ability to measure dark
energy depends strongly on the types of targets that we are able to select with
a given photometric data set. We show in this paper that we will be able to
successfully select the targets needed for the next generation of spectroscopic
surveys. We also investigate the details of this selection, including
optimisation of instrument design and survey strategy in order to measure dark
energy. We use color-color selection as well as neural networks to select the
best possible emission line galaxies and luminous red galaxies for a
cosmological survey. Using the Fisher matrix formalism we forecast the
efficiency of each target selection scenario. We show how the dark energy
figures of merit change in each target selection regime as a function of target
type, survey time, survey density and other survey parameters. We outline the
optimal target selection scenarios and survey strategy choices which will be
available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201
Survey incompleteness and the evolution of the QSO luminosity function
We concentrate on a type of QSO survey which depends on selecting QSO candidates based on combinations of colors. Since QSO's have emission lines and power-law continua, they are expected to yield broadband colors unlike those of stellar photospheres. Previously, the fraction of QSO's expected to be hiding (unselected) within the locus of stellar (U-J, J-F) colors was estimated at about 15 percent. We have now verified that the KK88 survey is at least 11 percent incomplete, but have determined that it may be as much as 34 percent incomplete. The 'missing' QSO's are expected to be predominantly at z less than or = 2.2. We have studied the proper motion and variability properties of all stellar objects with J less than or = 22.5 or F less than or = 21.5 in the SA 57 field which has previously been surveyed with a multicolor QSO search by KK88
Optically Faint Microjansky Radio Sources
We report on the identifications of radio sources from our survey of the
Hubble Deep Field and the SSA13 fields, both of which comprise the deepest
radio surveys to date at 1.4 GHz and 8.5 GHz respectively. About 80% of the
microjansky radio sources are associated with moderate redshift starburst
galaxies or AGNs within the I magnitude range of 17 to 24 with a median of I =
22 mag. Thirty-one (20%) of the radio sources are: 1) fainter than 25 mag,
with two objects in the HDF 28.5, 2) often identified with very red
objects 4, and 3) not significantly different in radio properties than
the brighter objects. We suggest that most of these objects are associated with
heavily obscured starburst galaxies with redshifts between 1 and 3. However,
other mechanisms are discussed and cannot be ruled out with the present
observations.Comment: to appear in Astrophysical Journal Letters, 3 figures, 1 tabl
Measurement of radiotherapy x-ray skin dose on a chest wall phantom
Sufficient skin dose needs to be delivered by a radiotherapy chest wall treatment regimen to ensure the probability of a near surface tumor recurrence is minimized. To simulate a chest wall treatment a hemicylindrical solid water phantom of 7.5 cm radius was irradiated with 6 MV x-rays using 20×20 cm2 and 10×20 cm2 fields at 100 cm source surface distance (SSD) to the base of the phantom. A surface dose profile was obtained from 0 to 180°, in 10° increments around the circumference of the phantom. Dosimetry results obtained from radiochromic film (effective depth of 0.17 mm) were used in the investigation, the superficial doses were found to be 28% (of Dmax) at the 0° beam entry position and 58% at the 90° oblique beam position. Superficial dose results were also obtained using extra thin thermoluminescent dosimeters (TLD) (effective depth 0.14 mm) of 30% at 0°, 57% at 90°, and a metal oxide semiconductor field effect transistor (MOSFET) detector (effective depth 0.5 mm) of 43% at 0°, 62% at 90°. Because the differences in measured superficial doses were significant and beyond those related to experimental error, these differences are assumed to be mostly attributable to the effective depth of measurement of each detector. We numerically simulated a bolus on/bolus off technique and found we could increase the coverage to the skin. Using an alternate “bolus on,” “bolus off” regimen, the skin would receive 36.8 Gy at 0° incidence and 46.4 Gy at 90° incidence for a prescribed midpoint dose of 50 Gy. From this work it is evident that, as the circumference of the phantom is traversed the SSD increases and hence there is an inverse square fluence fall-off, this is more than offset by the increase in skin dose due to surface curvature to a plateau at about 90°. Beyond this angle it is assumed that beam attenuation through the phantom and inverse square fall-off is causing the surface dose to reduce
Radio Wavelength Constraints on the Sources of the Far Infrared Background
The cosmic far infrared background detected recently by the COBE-DIRBE team
is presumably due, in large part, to the far infrared (FIR) emission from all
galaxies. We take the well-established correlation between FIR and radio
luminosity for individual galaxies and apply it to the FIR background. We find
that these sources make up about half of the extragalactic radio background,
the other half being due to AGN. This is in agreement with other radio
observations, which leads us to conclude that the FIR-radio correlation holds
well for the very faint sources making up the FIR background, and that the FIR
background is indeed due to star-formation activity (not AGN or other possible
sources). If these star-forming galaxies have a radio spectral index between
0.4 and 0.8, and make up 40 to 60% of the extragalactic radio background, we
find that they have redshifts between roughly 1 and 2, in agreement with recent
estimates by Madau et al. of the redshift of peak star-formation activity. We
compare the observed extragalactic radio background to the integral over the
logN-logS curve for star-forming radio sources, and find that the slope of the
curve must change significantly below about 1 microjansky. At 1 microjansky,
the faint radio source counts predict about 25 sources per square arcminute,
and these will cause SIRTF to be confusion limited at 160micron.Comment: 10 pages including 1 figure, AASTeX, accepted by Ap
- …