11 research outputs found

    Flexible formwork technologies – a state of the art review

    Get PDF
    Concrete is our most widely used construction material. Worldwide consumption of cement, the strength-giving component of concrete, is estimated at 4.10 Gt per year, rising from 2.22 Gt just ten years ago [1]. This rate of consumption means that cement manufacture alone is estimated to account for 5.2 % of global carbon dioxide emissions [2].Concrete offers the opportunity to economically create structures of almost any geometry. Yet its unique fluidity is seldom capitalised upon, with concrete instead being cast into rigid, flat moulds to create unoptimised geometries that result in high material use structures with large carbon footprints. This paper will explore flexible formwork construction technologies which embrace the fluidity of concrete to facilitate the practical construction of concrete structures with complex and efficient geometries. This paper presents the current state of the art in flexible formwork technology, highlighting practical uses, research challenges and new opportunities

    Gridshell as Formwork: Proof of Concept for a New Technique for Constructing Thin Concrete Shells Supported by Gridshell as Formwork

    Get PDF
    This paper documents an empirical experiment conducted in August 2014 as proof of concept for a new method of constructing concrete shells. An idea initially presented by the first author in 2012, it uses redeployable gridshells onto which fabric is midstressed and concrete applied. Primarily, this system addresses key issues that led to their decline in use: construction methods/formwork systems were not reusable, nor were they easily customizable to create different shapes. Employing 27 man-hours over seven days, two concrete shells were achieved using the same reusable and reconfigurable formwork. Lightweight (0.6 kg) PVC gridshell formwork supported 106.92 kg of concrete to create a concrete shell that covered 1.11 m2 (floor area). The construction verifies a low-cost (ÂŁ6.06/m2) efficiency and material utilization in the construction of very strong wide-spanning thin concrete structures. Detailed analysis of formwork behavior during construction and detailed measurements of resultant shell results prove this new method of deployable gridshells as a reusable and reconfigurable formwork to construct very strong concrete shells very quickly. Whilst the emphasis of the research focused on the construction process, the vaults were tested and sustained a failure load of 4.2 kN (4.32 times their deadweight), applied as a point load at the crown
    corecore