33 research outputs found

    Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells

    Get PDF
    Epidemiological data support the concept that phenols and polyphenols in diet are safe and nontoxic, and have long-lasting beneficial effects on human health. The potential target for complementary and alternative medicine (CAM) research has been on the discovery of natural compounds that can be used in the prevention and treatment of cancer. Propolis is one of the richest sources of plant phenolics (flavonoids and phenolic acids). The ethanolic extract of propolis (EEP) and its polyphenols possess immunomodulatory, chemopreventive, and antitumor effects. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a  naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. Endogenous TRAIL plays a significant role in immunosurveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. EEP and polyphenols isolated from propolis have been shown to sensitize cancer cells to TRAIL-induced apoptosis. In this paper we demonstrate for the first time the crucial role of the main phenolics isolated from propolis in enhancing TRAIL-mediated death in tumor cells for cancer chemoprevention

    Ethanolic Extract of Propolis Augments TRAIL-Induced Apoptotic Death in Prostate Cancer Cells

    Get PDF
    Prostate cancer is a commonly diagnosed cancer in men. The ethanolic extract of propolis (EEP) and its phenolic compounds possess immunomodulatory, chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO2L) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effects of EEP and phenolic compounds isolated from propolis in combination with TRAIL on two prostate cancer cell lines, hormone-sensitivity LNCaP and hormone-refractory DU145. The cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC/propidium iodide. The prostate cancer cell lines were proved to be resistant to TRAIL-induced apoptosis. Our study demonstrated that EEP and its components significantly sensitize to TRAIL-induced death in prostate cancer cells. The percentage of the apoptotic cells after cotreatment with 50 μg mL−1 EEP and 100 ng mL−1 TRAIL increased to 74.9 ± 0.7% for LNCaP and 57.4 ± 0.7% for DU145 cells. The strongest cytotoxic effect on LNCaP cells was exhibited by apigenin, kaempferid, galangin and caffeic acid phenylethyl ester (CAPE) in combination with TRAIL (53.51 ± 0.68–66.06 ± 0.62% death cells). In this work, we showed that EEP markedly augmented TRAIL-mediated apoptosis in prostate cancer cells and suggested the significant role of propolis in chemoprevention of prostate cancer

    Chalcones and Dihydrochalcones Augment TRAIL-Mediated Apoptosis in Prostate Cancer Cells

    Get PDF
    Chalcones and dihydrochalcones exhibit chemopreventive and antitumor activity. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a natural endogenous anticancer agent. We examined the cytotoxic and apoptotic effect of chalcones and dihydrochalcones on TRAIL-mediated apoptosis in LNCaP prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was detected using annexin V-FITC by flow cytometry and fluorescence microscopy. The ΔΨm was evaluated using DePsipher staining by fluorescence microscopy. Our study showed that two tested chalcones (chalcone and 2’,6’dihydroxy-4’-methoxychalcone) and three dihydrochalcones (2’,6’-dihydroxy-4’4-dimethoxydihydrochalcone, 2’,6’-dihydroxy-4’-methoxydihydro- chalcone,  and 2’,4’,6’-trihydroxydihydrochalcone, called phloretin) markedly augmented TRAIL-induced apoptosis and cytotoxicity in LNCaP cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer

    Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Get PDF
    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer

    Historical Aspects of Propolis Research in Modern Times

    Get PDF
    Propolis (bee glue) has been known for centuries. The ancient Greeks, Romans, and Egyptians were aware of the healing properties of propolis and made extensive use of it as a medicine. In the middle ages propolis was not a very popular topic and its use in mainstream medicine disappeared. However, the knowledge of medicinal properties of propolis survived in traditional folk medicine. The interest in propolis returned in Europe together with the renaissance theory of ad fontes. It has only been in the last century that scientists have been able to prove that propolis is as active and important as our forefathers thought. Research on chemical composition of propolis started at the beginning of the twentieth century and was continued after WW II. Advances in chromatographic analytical methods enabled separation and extraction of several components from propolis. At least 180 different compounds have been identified so far. Its antibacterial, antiseptic, anti-inflammatory, antifungal, anesthetic, and healing properties have been confirmed. Propolis has been effectively used in treatment of dermatological, laryngological, and gynecological problems, neurodegenerative diseases, in wound healing, and in treatment of burns and ulcers. However, it requires further research that may lead to new discoveries of its composition and possible applications

    Inhibition of Inflammatory Mediators by Neobavaisoflavone in Activated RAW264.7 Macrophages

    Full text link
    Flavonoids and coumarins are the major bioactive constituents identified in Psoralea corylifolia. The active fraction isolated from fruits, seeds and roots possesses antibacterial, antioxidative and immunomodulatory properties. Neobavaisoflavone is one of the flavonoids found in Psoralea corylifolia. In the present study we investigated in vitro the anti-inflammatory activity of neobavaisoflavone. Macrophages play an important role in inflammation through the release of inflammatory mediators involved in the immune response. Inappropriate and prolonged macrophage activation is largely responsible for the pathology of acute and chronic inflammatory conditions. Neobavaisoflavone significantly inhibited the production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and cytokines: IL-1β, IL-6, IL-12p40, IL-12p70, TNF-α in LPS+IFN-γ– or PMA– stimulated RAW264.7 macrophages

    Synthesis and Preliminary Evaluation of Biological Activity of Glycoconjugates Analogues of Acyclic Uridine Derivatives

    Full text link
    Herein we present the methodology for obtaining glycosyltransferase inhibitors, analogues of natural enzyme substrates of donor-type: UDP-glucose and UDP-galactose. The synthesis concerned glycoconjugates, nucleoside analogues containing an acyclic ribose mimetic linked to a uracil moiety in their structure. The biological activity of the synthesised compounds was determined on the basis of their ability to inhibit the model enzyme action of β-1,4-galactosyltransferase from bovine milk. The obtained results allowed to expand and supplement the existing library of synthetic compounds that are able to regulate the biological activity of enzymes from the GT class

    Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars

    Full text link
    Hepatitis C virus (HCV), the etiological agent of the most common and dangerous diseases of the liver, is a major health problem worldwide. Despite many attempts, there is still no vaccine available. Although many drugs have been approved for use mostly in combination regimen, their high costs make them out of reach in less developed regions. Previously, we have synthesized a series of compounds belonging to uridine derivatives of 2-deoxy sugars and have proved that some of them possess antiviral activity against influenza A virus associated with N-glycosylation inhibition. Here, we analyze the antiviral properties of these compounds against HCV. Using cell culture-derived HCV (HCVcc), HCV pseudoparticles (HCVpp), and replicon cell lines, we have shown high anti-HCV activity of two compounds. Our results indicated that compounds 2 and 4 significantly reduced HCVcc propagation with IC50 values in low μM range. Further experiments using the HCVpp system confirmed that both compounds significantly impaired the infectivity of produced HCVpp due to the inhibition of the correct maturation of viral glycoproteins. Overall, our results suggest that inhibiting the glycosylation process might be a good target for new therapeutics not only against HCV, but other important viral pathogens which contain envelopes with highly glycosylated proteins

    Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus

    Full text link
    Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities
    corecore