4,018 research outputs found

    Hypertonicity-affected genes are differentially expressed in clear cell renal cell carcinoma and correlate with cancer-specific survival

    Get PDF
    The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78-6.07; p = 4.39 × 10(-13)), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10(-5)). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05-1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    Measurement of the branching fraction and CPCP asymmetry in B0π0π0B^{0} \to \pi^{0}\pi^{0} decays, and an improved constraint on ϕ2\phi_{2}

    Full text link
    We measure the branching fraction and CPCP violation asymmetry in the decay B0π0π0B^{0}\to \pi^{0}\pi^{0}, using a data sample of 752×106752\times 10^{6} BBˉB\bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB e+ee^{+}e^{-} collider. The obtained branching fraction and direct CPCP asymmetry are B(Bπ0π0)=[1.31±0.19 (stat.)±0.19 (syst.)]×106 \mathcal{B}(B\to \pi^{0}\pi^{0}) = [1.31 \pm 0.19~ \text{(stat.)} \pm 0.19~ \text{(syst.)}] \times 10^{-6} and ACP=+0.14±0.36 (stat.)±0.10 (syst.), A_{CP} = +0.14 \pm 0.36~ \text{(stat.)} \pm 0.10~ \text{(syst.)}, respectively. The signal significance, including the systematic uncertainty, is 6.4 standard deviations. We combine these results with Belle's earlier measurements of B0π+πB^{0}\to \pi^{+} \pi^{-} and B±π±π0B^{\pm} \to \pi^{\pm} \pi^{0} to exclude the CPCP-violating parameter ϕ2\phi_{2} from the range 15.5<ϕ2<75.015.5^{\circ} < \phi_{2} < 75.0^{\circ} at 95\% confidence level.Comment: 8 pages, 2 figure

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets

    Full text link
    We consider the top forward-backward (FB) asymmetry at the Tevatron and top charge asymmetry at the LHC within chiral U(1)^\prime models with flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were introduced in the ref. [65]. The models could enhance not only the top forward-backward asymmetry at Tevatron, but also the top charge asymmetry at LHC, without too large same-sign top pair production rates. We identify parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs bosons where all the experimental data could be accommodated, including the case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde

    On measurement of top polarization as a probe of ttˉt \bar t production mechanisms at the LHC

    Get PDF
    In this note we demonstrate the use of top polarization in the study of ttˉt \bar t resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cosϕ\cos\phi_\ell) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive zz axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbWtbW couplings, to linear order. We study, for purposes of demonstration, the case of a ZZ' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: s=14\sqrt{s} = 14 TeV and s=7\sqrt{s} = 7 TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for MZ1200M_{Z'} \simeq 1200 GeV, being as high as 1010 % for a smaller mass of the ZZ' of 700700 GeV and for the largest allowed coupling in the model, the values being higher for the 77 TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 44% (77%) for 1414 (77) TeV LHC, whereas for the Tevatron, values as high as 1212% are attained. For the 1414 TeV LHC with an integrated luminosity of 10 fb1^{-1}, these numbers translate into a 3σ3 \sigma sensitivity over a large part of the range 500MZ1500500 \lesssim M_{Z'} \lesssim 1500 GeV.Comment: 28 page, LaTeX, requires JHEP style file, 12 figures. Typos corrected and references adde
    corecore