4,018 research outputs found
Hypertonicity-affected genes are differentially expressed in clear cell renal cell carcinoma and correlate with cancer-specific survival
The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78-6.07; p = 4.39 × 10(-13)), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10(-5)). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05-1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy
Recommended from our members
Rhythm in the speech of a person with right hemisphere damage: Applying the pairwise variability index
Although several aspects of prosody have been studied in speakers with right hemisphere damage (RHD), rhythm remains largely uninvestigated. This study compares the rhythm of an Australian English speaker with right hemisphere damage (due to a stroke, but with no concomitant dysarthria) to that of a neurologically unimpaired individual. The speakers' rhythm is compared using the pairwise variability index (PVI) which allows for an acoustic characterization of rhythm by comparing the duration of successive vocalic and intervocalic intervals. A sample of speech from a structured interview between a speech and language therapist and each participant was analysed. Previous research has shown that speakers with RHD may have difficulties with intonation production, and therefore it was hypothesized that there may also be rhythmic disturbance. Results show that the neurologically normal control uses a similar rhythm to that reported for British English (there are no previous studies available for Australian English), whilst the speaker with RHD produces speech with a less strongly stress-timed rhythm. This finding was statistically significant for the intervocalic intervals measured (t(8) = 4.7, p < .01), and suggests that some aspects of prosody may be right lateralized for this speaker. The findings are discussed in relation to previous findings of dysprosody in RHD populations, and in relation to syllable-timed speech of people with other neurological conditions
Constraints on new interactions from neutron scattering experiments
Constraints for the constants of hypothetical Yukawa-type corrections to the
Newtonian gravitational potential are obtained from analysis of neutron
scattering experiments. Restrictions are obtained for the interaction range
between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic
force microscopy are not sensitive. Experimental limits are obtained also for
non-electromagnetic inverse power law neutron-nucleus potential. Some
possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure
Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors
The pixel detector is the innermost tracking device in CMS, reconstructing
interaction vertices and charged particle trajectories. The sensors located in
the innermost layers of the pixel detector must be upgraded for the ten-fold
increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase.
As a possible replacement for planar sensors, 3D silicon technology is under
consideration due to its good performance after high radiation fluence. In this
paper, we report on pre- and post- irradiation measurements for CMS 3D pixel
sensors with different electrode configurations. The effects of irradiation on
electrical properties, charge collection efficiency, and position resolution of
3D sensors are discussed. Measurements of various test structures for
monitoring the fabrication process and studying the bulk and surface
properties, such as MOS capacitors, planar and gate-controlled diodes are also
presented.Comment: 14 page
Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks
In this report we review recent theoretical progress and the latest
experimental results in jet substructure from the Tevatron and the LHC. We
review the status of and outlook for calculation and simulation tools for
studying jet substructure. Following up on the report of the Boost 2010
workshop, we present a new set of benchmark comparisons of substructure
techniques, focusing on the set of variables and grooming methods that are
collectively known as "top taggers". To facilitate further exploration, we have
attempted to collect, harmonise, and publish software implementations of these
techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion,
editors; v2: minor edits from journal revision
Measurement of the branching fraction and asymmetry in decays, and an improved constraint on
We measure the branching fraction and violation asymmetry in the decay
, using a data sample of
pairs collected at the resonance with the Belle detector at the
KEKB collider. The obtained branching fraction and direct
asymmetry are and
respectively. The signal significance, including the systematic uncertainty, is
6.4 standard deviations. We combine these results with Belle's earlier
measurements of and
to exclude the -violating parameter from the range at 95\% confidence level.Comment: 8 pages, 2 figure
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj
We present U(1) flavor models for leptophobic Z' with flavor dependent
couplings to the right-handed up-type quarks in the Standard Model, which can
accommodate the recent data on the top forward-backward (FB) asymmetry and the
dijet resonance associated with a W boson reported by CDF Collaboration. Such
flavor-dependent leptophobic charge assignments generally require extra chiral
fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor
symmetry calls for new U(1)'-charged Higgs doublets in order for the SM
fermions to have realistic renormalizable Yukawa couplings. The stringent
constraints from the top FB asymmetry at the Tevatron and the same sign top
pair production at the LHC can be evaded due to contributions of the extra
Higgs doublets. We also show that the extension could realize cold dark matter
candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion,
accepted for publication in JHE
Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets
We consider the top forward-backward (FB) asymmetry at the Tevatron and top
charge asymmetry at the LHC within chiral U(1)^\prime models with
flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were
introduced in the ref. [65]. The models could enhance not only the top
forward-backward asymmetry at Tevatron, but also the top charge asymmetry at
LHC, without too large same-sign top pair production rates. We identify
parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs
bosons where all the experimental data could be accommodated, including the
case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde
Influence of Stress Ratio on the Elevated-Temperature Fatigue of a Silicon Carbide Fiber-Reinforced Silicon Nitride Composite
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65470/1/j.1151-2916.1991.tb07152.x.pd
On measurement of top polarization as a probe of production mechanisms at the LHC
In this note we demonstrate the use of top polarization in the study of resonances at the LHC, in the possible case where the dynamics implies
a non-zero top polarization. As a probe of top polarization we construct an
asymmetry in the decay-lepton azimuthal angle distribution (corresponding to
the sign of ) in the laboratory. The asymmetry is non-vanishing
even for a symmetric collider like the LHC, where a positive axis is not
uniquely defined. The angular distribution of the leptons has the advantage of
being a faithful top-spin analyzer, unaffected by possible anomalous
couplings, to linear order. We study, for purposes of demonstration, the case
of a as might exist in the little Higgs models. We identify kinematic cuts
which ensure that our asymmetry reflects the polarization in sign and
magnitude. We investigate possibilities at the LHC with two energy options:
TeV and TeV, as well as at the Tevatron. At the
LHC the model predicts net top quark polarization of the order of a few per
cent for GeV, being as high as for a smaller mass
of the of GeV and for the largest allowed coupling in the model, the
values being higher for the TeV option. These polarizations translate to a
deviation from the standard-model value of azimuthal asymmetry of up to about
() for () TeV LHC, whereas for the Tevatron, values as high as
are attained. For the TeV LHC with an integrated luminosity of 10
fb, these numbers translate into a sensitivity over a large
part of the range GeV.Comment: 28 page, LaTeX, requires JHEP style file, 12 figures. Typos corrected
and references adde
- …