3 research outputs found

    High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier

    Get PDF
    High-energy phase-stable sub-cycle mid-infrared pulses can provide unique opportunities to explore phase-sensitive strong-field light-matter interactions in atoms, molecules and solids. At the mid-infrared wavelength, the Keldysh parameter could be much smaller than unity even at relatively modest laser intensities, enabling the study of the strong-field sub-cycle electron dynamics in solids without damage. Here we report a high-energy sub-cycle pulse synthesiser based on a mid-infrared optical parametric amplifier and its application to high-harmonic generation in solids. The signal and idler combined spectrum spans from 2.5 to 9.0 μm. We coherently synthesise the passively carrier-envelope phase-stable signal and idler pulses to generate 33 μJ, 0.88-cycle, multi-gigawatt pulses centred at ~4.2 μm, which is further energy scalable. The mid-infrared sub-cycle pulse is used for driving high-harmonic generation in thin silicon samples, producing harmonics up to ~19th order with a continuous spectral coverage due to the isolated emission by the sub-cycle driver

    Multi-mJ, kHz, 2.1-μm OPCPA for high-flux soft X-ray high-harmonic radiation

    Get PDF
    We report on a multi-mJ 2.1-μm OPCPA system operating at a 1-kHz repetition rate, pumped by a picosecond cryogenic Yb:YAG pump laser, and the phase-matched high-flux high-harmonic soft X-ray generation

    A novel few-cycle optical source in the mid-infrared

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.Cataloged from PDF version of thesis.Includes bibliographical references (pages 43-45).In this thesis, I designed, simulated, and implemented a novel optical pulse generation system which is shown to be able to generate exceptionally short optical pulses in the mid-infrared, tunable from 2-4[mu]m with pulse widths as low as 1.5 optical cycles at 3.5[mu]m (18fs). Energies as high a 1[mu]J were achieved, representing a peak power of roughly 100MW, at a 1kHz repetition rate, with excellent beam quality. The system was based on adiabatic difference frequency generation in an aperiodically polled lithium niobate crystal of an amplified, mode-locked Ti:Sapphire laser system.by Peter Ra Krogen.S.M
    corecore