19 research outputs found

    Is There a Place for Dietary Fiber Supplements in Weight Management?

    Get PDF
    Inadequate dietary fiber intake is common in modern diets, especially in children. Epidemiological and experimental evidence point to a significant association between a lack of fiber intake and ischemic heart disease, stroke atherosclerosis, type 2 diabetes, overweight and obesity, insulin resistance, hypertension, dyslipidemia, as well as gastrointestinal disorders such as diverticulosis, irritable bowel disease, colon cancer, and cholelithiasis. The physiological effects of fiber relate to the physical properties of volume, viscosity, and water-holding capacity that the fiber imparts to food leading to important influences over the energy density of food. Beyond these physical properties, fiber directly impacts a complex array of microbiological, biochemical, and neurohormonal effects directly through modification of the kinetics of digestion and through its metabolism into constituents such as short chain fatty acids, which are both energy substrates and important enteroendocrine ligands. Of particular interest to clinicians is the important role dietary fiber plays in glucoregulation, appetite, and satiety. Supplementation of the diet with highly functional fibers may prove to play an important role in long-term obesity management

    No difference in body weight decrease between a low-glycemic-index diet and a high-glycemic-index diet but reduced LDL-cholesterol after 10 wk ad libitum intake low-glycemic-index diet

    No full text
    Background: The role of glycemic index (GI) in appetite and body-weight regulation is still not clear. Objective: The objective of the study was to investigate the long-term effects of a low-fat, high-carbohydrate diet with either low glycemic index (LGI) or high glycemic index (HGI) on ad libitum energy intake, body weight, and composition, as well as on risk factors for type 2 diabetes and ischemic heart disease in overweight healthy subjects. Design: The study was a 10-wk parallel, randomized, intervention trial with 2 matched groups. The LGI or HGI test foods, given as replacements for the subjects’ usual carbohydrate-rich foods, were equal in total energy, energy density, dietary fiber, and macronutrient composition. Subjects were 45 (LGI diet: n = 23; HGI diet: n = 22) healthy overweight [body mass index (in kg/m2): 27.6 ± 0.2] women aged 20–40 y. Results: Energy intake, mean (± SEM) body weight (LGI diet: –1.9 ± 0.5 kg; HGI diet: –1.3 ± 0.3 kg), and fat mass (LGI diet: –1.0 ± 0.4 kg; HGI diet: –0.4 ± 0.3 kg) decreased over time, but the differences between groups were not significant. No significant differences were observed between groups in fasting serum insulin, homeostasis model assessment for relative insulin resistance, homeostasis model assessment for ß cell function, triacylglycerol, nonesterified fatty acids, or HDL cholesterol. However, a 10% decrease in LDL cholesterol (P < 0.05) and a tendency to a larger decrease in total cholesterol (P = 0.06) were observed with consumption of the LGI diet as compared with the HGI diet. Conclusions: This study does not support the contention that low-fat LGI diets are more beneficial than HGI diets with regard to appetite or body-weight regulation as evaluated over 10 wk. However, it confirms previous findings of a beneficial effect of LGI diets on risk factors for ischemic heart disease. Key Words: Obesity • fat mass • energy intake • type 2 diabetes • ischemic heart disease • cholesterol • triacylglycerol • glucose • insuli
    corecore