26 research outputs found

    Vectors and Methods for Enhanced Cell Longevity and Protein Expression

    Get PDF
    It is the object of the current invention to provide methods and compositions relating to the expression of vankyrin proteins in cell lines to increase their viability, longevity and capacity for protein production. The inventors have discovered that the expression of P-ank-1 and I2-ank-3 proteins in cell culture has increased the cells\u27 longevity and capacity for endogenous and/or heterologous target protein production. Specifically, the present invention relates to the enhanced expression of endogenous and/or heterologous target proteins/polypeptides in recombinant cells that are also expressing P-ank-1 and/or I2-ank-3 protein compared to expression host cells that are not expressing P-ank-1 and/or I2-ank-3 protein

    Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Get PDF
    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification

    Polydnavirus genomes reflect their dual roles as mutualists and pathogens

    Get PDF
    AbstractSymbionts often exhibit significant reductions in genome complexity while pathogens often exhibit increased complexity through acquisition and diversification of virulence determinants. A few organisms have evolved complex life cycles in which they interact as symbionts with one host and pathogens with another. How the predicted and opposing influences of symbiosis and pathogenesis affect genome evolution in such instances, however, is unclear. The Polydnaviridae is a family of double-stranded (ds) DNA viruses associated with parasitoid wasps that parasitize other insects. Polydnaviruses (PDVs) only replicate in wasps but infect and cause severe disease in parasitized hosts. This disease is essential for survival of the parasitoid's offspring. Thus, a true mutualism exists between PDVs and wasps as viral transmission depends on parasitoid survival and parasitoid survival depends on viral infection of the wasp's host. To investigate how life cycle and ancestry affect PDVs, we compared the genomes of Campoletis sonorensis ichnovirus (CsIV) and Microplitis demolitor bracovirus (MdBV). CsIV and MdBV have no direct common ancestor, yet their encapsidated genomes share several features including segmentation, diversification of virulence genes into families, and the absence of genes required for replication. In contrast, CsIV and MdBV share few genes expressed in parasitized hosts. We conclude that the similar organizational features of PDV genomes reflect their shared life cycle but that PDVs associated with ichneumonid and braconid wasps have likely evolved different strategies to cause disease in the wasp's host and promote parasitoid survival

    Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization.

    Get PDF
    We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.This work was supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (T.J.S. and B. L-L.) and a Cancer Research UK Cambridge Cancer Centre PhD studentship (H.K.R.).This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3043.html

    Divergences in Protein Activity and Cellular Localization within the Campoletis sonorensis Ichnovirus Vankyrin Family

    No full text
    Ichnoviruses (IVs) occur in obligate symbiotic associations with endoparasitic ichneumonid wasps. IVs are injected with eggs during parasitization, where viral infection and gene expression alter host physiology to ensure endoparasitoid survival. The seven Campoletis sonorensis IV (CsIV) vankyrin genes encode proteins that possess ankyrin repeat domains resembling the inhibitory domains of NF-κB transcription factor inhibitors (IκBs). The CsIV vankyrins are divided into two subclasses: those expressed primarily in the host fat body (three genes) and those expressed in host hemocytes (four genes). CsIV vankyrin proteins showed limited antigenic similarity when analyzed by Western blotting. Cellular localization and expression patterns of recombinant vankyrin proteins in High Five and Sf9 insect cells differed within and between the subclasses and in cells exposed to lipopolysaccharide, laminarin, or viral immune challenge. In unstimulated Sf9 cells, five vankyrins were detected in cell nuclei. The remaining two proteins localized predominantly to cytoplasmic granules. Immune stimulation of cells resulted in a nuclear-to-cytoplasmic shift of three vankyrins but did not affect localization of other variants. When expressed from recombinant Autographa californica multiple nucleopolyhedroviruses (AcMNPVs), all vankyrins showed a nuclear localization during early stages of infection with patterns resembling those of immune-challenged cells as the infection progressed. Two fat body vankyrins also produced unique biological effects when expressed from recombinant AcMNPV. Insect cells infected with these viruses exhibited enhanced longevity compared to those infected with viruses expressing other vankyrins. Together, these data suggest that vankyrin proteins in CsIV have divergent physiological functions

    Iκβ-Related vankyrin Genes in the Campoletis sonorensis Ichnovirus: Temporal and Tissue-Specific Patterns of Expression in Parasitized Heliothis virescens Lepidopteran Hosts

    No full text
    Polydnaviruses (PDVs) are unusual insect viruses that occur in obligate symbiotic associations with parasitic ichneumonid (ichnoviruses, or IVs) and braconid (bracoviruses, or BVs) wasps. PDVs are injected with eggs, ovarian proteins, and venom during parasitization. Following infection of cells in host tissues, viral genes are expressed and their products function to alter lepidopteran host physiology, enabling endoparasitoid development. Here we describe the Campoletis sonorensis IV viral ankyrin (vankyrin) gene family and its transcription. The seven members of this gene family possess ankyrin repeat domains that resemble the inhibitory domains of the Drosophila melanogaster NF-κβ transcription factor inhibitor (Iκβ) cactus. vankyrin gene expression is detected within 2 to 4 h postparasitization (p.p.) in Heliothis virescens hosts and reaches peak levels by 3 days p.p. Our data indicate that vankyrin genes from the C. sonorensis IV genome are differentially expressed in the tissues of parasitized hosts and can be divided into two subclasses: those that target the host fat body and those that target host hemocytes. Polyclonal antibodies raised against a fat-body targeting vankyrin detected a 19-kDa protein in crude extracts prepared from the 3 days p.p. fat body. Vankyrin-specific Abs localized to 3-day p.p. fat-body and hemocyte nuclei, suggesting a role for vankyrin proteins in the nuclei of C. sonorensis IV-infected cells. These data are evidence for divergent tissue specificities and targeting of multigene families in IVs. We hypothesize that PDV vankyrin genes may suppress NF-κβ activity during immune responses and developmental cascades in parasitized lepidopteran hosts of C. sonorensis
    corecore