58 research outputs found

    Exhaustive enumeration unveils clustering and freezing in random 3-SAT

    Full text link
    We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure

    The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems

    Get PDF
    Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources

    Towards the Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Common Bean

    No full text
    none11The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conservation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris) is the most economically important for human consumption, and its evolutionary trajectories as a species have been crucial to determining the structure and level of its present and available genetic diversity. Genomic advances are considerably enhancing the characterization and assessment of important genetic variants. For this purpose, the development and availability of, and access to, well-described and efficiently managed genetic resource collections that comprise pure lines derived by single-seed-descent cycles will be paramount for the use of the reservoir of common bean variability and for the advanced breeding of legume crops. This is one of the main aims of the new and challenging European project INCREASE, which is the implementation of Intelligent Collections with appropriate standardized protocols that must be characterized, maintained, and made available, along with the related data, to users such as breeders and researchers. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterizing common bean seeds for seed trait descriptors. Basic Protocol 2: Bean seed imaging. Basic Protocol 3: Characterizing bean lines for plant trait descriptors specific for common bean Primary Seed Increase.noneCortinovis G.; Oppermann M.; Neumann K.; Graner A.; Gioia T.; Marsella M.; Alseekh S.; Fernie A.R.; Papa R.; Bellucci E.; Bitocchi E.Cortinovis, G.; Oppermann, M.; Neumann, K.; Graner, A.; Gioia, T.; Marsella, M.; Alseekh, S.; Fernie, A. R.; Papa, R.; Bellucci, E.; Bitocchi, E

    Runtime analysis of evolutionary algorithms on randomly constructed high-density satisfiable 3-CNF formulas

    No full text
    We show that simple mutation-only evolutionary algorithms find a satisfying assignment on two similar models of random planted 3-CNF Boolean formulas in polynomial time with high probability in the high constraint density regime. We extend the analysis to random formulas conditioned on satisfiability (i.e., the so-called filtered distribution) and conclude that most high-density satisfiable formulas are easy for simple evolutionary algorithms. With this paper, we contribute the first rigorous study of randomized search heuristics from the evolutionary computation community on well-studied distributions of random satisfiability problems.Andrew M. Sutton, and Frank Neuman

    Towards Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Lupins

    No full text
    Well-characterized genetic resources are fundamental to maintain and provide the various genotypes for pre-breeding programs for the production of new cultivars (e.g., wild relatives, unimproved material, landraces). The aim of the current article is to provide protocols for the characterization of the genetic resources of two lupin crop species: the European Lupinus albus and the American Lupinus mutabilis. Intelligent nested collections of lupins derived from homozygous lines (single-seed descent) are being developed, established, and exploited using cutting-edge approaches for genotyping, phenotyping, data management, and data analysis within the INCREASE project (EU Horizon 2020). This will allow us to predict the phenotypic performance of genotyped lines, and will further boost research and development in lupins. Lupins stand out due to their high-quality seed protein (∼40% of seed dry weight) and other primary components in the seeds, which include fatty acids, dietary fiber, and minerals. The potential of lupins as a crop is highlighted by the multiple benefits of plant-based food in terms of food security, nutrition, human health, and sustainable production. The use of lupins in foods, along with other well-studied and widely used food legumes, will also provide a greatly diversified plant-based food palette to meet the Global Goals for Sustainable Development to improve people's lives by 2030. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Lupin seed phenotypic descriptors. Basic Protocol 2: Lupin seed imaging. Basic Protocol 3: Standardized phenotypic characterization of lupin genetic resources grown towards primary seed increase (development of single-seed descent genetic resources)
    corecore