82 research outputs found
Recessive Antimorphic Alleles Overcome Functionally Redundant Loci to Reveal TSO1 Function in Arabidopsis Flowers and Meristems
Arabidopsis TSO1 encodes a protein with conserved CXC domains known to bind DNA and is homologous to animal proteins that function in chromatin complexes. tso1 mutants fall into two classes due to their distinct phenotypes. Class I, represented by two different missense mutations in the CXC domain, leads to failure in floral organ development, sterility, and fasciated inflorescence meristems. Class II, represented by a nonsense mutation and a T-DNA insertion line, develops wild-typeâlike flowers and inflorescences but shows severely reduced fertility. The phenotypic variability of tso1 alleles presents challenges in determining the true function of TSO1. In this study, we use artificial microRNA, double mutant analysis, and bimolecular fluorescence complementation assay to investigate the molecular basis underlying these two distinct classes of phenotypes. We show that the class I mutants could be converted into class II by artificial microRNA knockdown of the tso1 mutant transcript, suggesting that class I alleles produce antimorphic mutant proteins that interfere with functionally redundant loci. We identified one such redundant factor coded by the closely related TSO1 homolog SOL2. We show that the class I phenotype can be mimicked by knocking out both TSO1 and its homolog SOL2 in double mutants. Such antimorphic alleles targeting redundant factors are likely prevalent in Arabidopsis and maybe common in organisms with many sets of paralogous genes such as human. Our data challenge the conventional view that recessive alleles are always hypomorphic or null and that antimorphic alleles are always dominant. This study shows that recessive alleles can also be antimorphic and can produce a phenotype more severe than null by interfering with the function of related loci. This finding adds a new paradigm to classical genetic concepts, with important implications for future genetic studies both in basic research as well as in agriculture and medicine
Bicycle Use for Transport in an Australian and a Belgian City: Associations with Built-Environment Attributes
The walkability attributes of neighborhood environments (residential density, land use mixture, and connectedness of streets) have been found to be associated with higher rates of walking. However, relatively less is known about the associations of walkability attributes with bicycle use for transport. We examined the relationships between adults' bicycle use for transport and measures of neighborhood walkability in two settings: an Australian city (Adelaide) with low rates of bicycle use and a Belgian city (Ghent) with high rates of bicycle use. A total of 2,159 and 382 participants were recruited in Adelaide and Ghent, respectively. A walkability index was derived from objectively measured data in Adelaide, while a similar index was derived from perceived measures in Ghent. Logistic regression models were employed to examine associations of bicycle use with different levels of walkability. There were higher rates of bicycle ownership for Ghent compared to Adelaide participants (96% versus 61%), and there was a higher prevalence of bicycle use for transport for Ghent compared to Adelaide participants (50% vs. 14%). Despite the large differences in bicycle ownership and use, living in a high-walkable neighborhood was associated with significantly higher odds of bicycle use for transport in both cities, after adjusting for relevant confounding factors. Built-environment innovations that are increasingly being advocated by health authorities and transport planners, primarily to promote higher rates of walking for transport, should also impact positively on bicycle use
Developing a Method to Test the Validity of 24 Hour Time Use Diaries Using Wearable Cameras: A Feasibility Pilot
Self-report time use diaries collect a continuous sequenced record of daily activities but the validity of the data they produce is uncertain. This study tests the feasibility of using wearable cameras to generate, through image prompted interview, reconstructed 'near-objective' data to assess their validity. 16 volunteers completed the Harmonised European Time Use Survey (HETUS) diary and used an Autographer wearable camera (recording images at approximately 15 second intervals) for the waking hours of the same 24-hour period. Participants then completed an interview in which visual images were used as prompts to reconstruct a record of activities for comparison with the diary record. 14 participants complied with the full collection protocol. We compared time use and number of discrete activities from the diary and camera records (using 10 classifications of activity). In terms of aggregate totals of daily time use we found no significant difference between the diary and camera data. In terms of number of discrete activities, participants reported a mean of 19.2 activities per day in the diaries, while image prompted interviews revealed 41.1 activities per day. The visualisations of the individual activity sequences reveal some potentially important differences between the two record types, which will be explored at the next project stage. This study demonstrates the feasibility of using wearable cameras to reconstruct time use through image prompted interview in order to test the concurrent validity of 24-hour activity time-use budgets. In future we need a suitably powered study to assess the validity and reliability of 24-hour time use diaries
Should we reframe how we think about physical activity and sedentary behaviour measurement? Validity and reliability reconsidered
BACKGROUND: The measurement of physical activity (PA) and sedentary behaviour (SB) is fundamental to health related research, policy, and practice but there are well known challenges to these measurements. Within the academic literature, the terms âvalidityâ and âreliabilityâ are frequently used when discussing PA and SB measurement to reassure the reader that they can trust the evidence. DISCUSSION: In this paper we argue that a lack of consensus about the best way to define, assess, or utilize the concepts of validity and reliability has led to inconsistencies and confusion within the PA and SB evidence base. Where possible we propose theoretical examples and solutions. Moreover we present an overarching framework (The Edinburgh Framework) which we believe will provide a process or pathway to help researchers and practitioners consider validity and reliability in a standardized way. CONCLUSION: Further work is required to identify all necessary and available solutions and generate consensus in our field to develop the Edinburgh Framework into a useful practical resource. We envisage that ultimately the proposed framework will benefit research, practice, policy, and teaching. We welcome critique, rebuttal, comment, and discussion on all ideas presented
Centrality dependence of inclusive J/Ï production in p-Pb collisions at s N N = 5.02 TeV
We present a measurement of inclusive J/psi production in p-Pb collisions at root S-NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p(T), in the backward (-4.46 < y(cms) < -2.96) and forward (2.03 < y(cms) < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 < y(cms) < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p(T)-differential J/psi production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p(T) and p(T)(2) values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p(T) for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/psi yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p(T) of the J/psi. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions
Measurement of charged jet suppression in Pb-Pb collisions at = 2.76 TeV
A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at âsNN = 2.76TeV is reported. Jets are reconstructed from charged particles using the anti-k T jet algorithm with jet resolution parameters R of 0.2 and 0.3 in pseudo-rapidity |η| < 0.5. The transverse momentum p T of charged particles is measured down to 0.15 GeV/c which gives access to the low p T fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter R = 0.3 considered in the analysis. The fragmentation bias introduced by selecting jets with a high p T leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with R = 0.2 and R = 0.3 is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with R < 0.3
- âŠ