53 research outputs found

    Developmental Robustness by Obligate Interaction of Class B Floral Homeotic Genes and Proteins

    Get PDF
    DEF-like and GLO-like class B floral homeotic genes encode closely related MADS-domain transcription factors that act as developmental switches involved in specifying the identity of petals and stamens during flower development. Class B gene function requires transcriptional upregulation by an autoregulatory loop that depends on obligate heterodimerization of DEF-like and GLO-like proteins. Because switch-like behavior of gene expression can be displayed by single genes already, the functional relevance of this complex circuitry has remained enigmatic. On the basis of a stochastic in silico model of class B gene and protein interactions, we suggest that obligate heterodimerization of class B floral homeotic proteins is not simply the result of neutral drift but enhanced the robustness of cell-fate organ identity decisions in the presence of stochastic noise. This finding strongly corroborates the view that the appearance of this regulatory mechanism during angiosperm phylogeny led to a canalization of flower development and evolution

    Interaction of aluminium and drought stress on root growth and crop yield on acid soils

    Full text link

    Separation Of Seed Development From Monocarpic Senescence In Soybeans

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62652/1/271354a0.pd
    corecore