2 research outputs found

    Predicting Seasonal and Spatial Onset of cHABs in Polymictic Reservoirs

    Get PDF
    Cyanobacterial Harmful Algal Blooms (cHABS) are a naturally occurring but increasingly common phenomenon due to anthropogenic activities and climate change. cHABs reduce water quality by forming unsightly surface scums and sometimes producing algal matts on the surface of water bodies, reduce water quality, and in high densities can produce cyanotoxins that can harm humans, pets, and wildlife. Ecological forecasting of cHABs has proved elusive in part because the in-situ fluorometric methods currently employed for detecting cyanobacteria cells are subject to varied interference as water quality and the biotic community changes. In this study we seek to develop an ecological forecasting capability that overcomes both temporally and spatially derived in-situ fluorometric interferences. We obtained water samples at 26 polymictic reservoirs over a two-day period and at five polymictic reservoirs weekly during the summer of 2019. Collected water samples are being used for quantitative analysis of cyanobacterial cell densities by means of qPCR. We plan a data reduction technique (e.g. PCA, VIF screening, elastic-net regression as appropriate) followed by multivariate predictive model (e.g. multiple regression, ordination, discriminant analysis as appropriate)

    Density‐dependent within‐patch movement behavior of two competing species

    No full text
    Abstract Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures‐with‐distance were well described by a random‐diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped‐shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within‐patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes
    corecore