3 research outputs found

    A Novel Approach for Skin Regeneration by a Potent Bioactive Placental-Loaded Microneedle Patch: Comparative Study of Deer, Goat, and Porcine Placentas

    No full text
    The aims of this study were to investigate the skin regeneration potential of bioactive placenta (deer placenta (DP), goat placenta (GP), and porcine placenta (PP)) and fabricate bioactive extract-loaded dissolving microneedles (DMNs) as a dermal delivery approach. The placentas were water-extracted, and the active compounds were evaluated. Bioactivity studies were performed in dermal fibroblasts and keratinocytes. DMNs were fabricated to deliver the potent bioactive placenta extract into the skin. All placental extracts expressed high amounts of protein, growth factors (EGF, FGF, IGF-1 and TGF-β1), and amino acids. These extracts were not toxic to the skin cells, while the proliferation of fibroblast cells significantly increased in a time-dependent manner. GP extract that exhibited the maximum proliferation, migration, and regeneration effect on fibroblast cells was loaded into DMN patch. The suitable physical properties of DMNs led to increased skin permeation and deposition of bioactive macromolecules. Moreover, GP extract-loaded DMNs showed minimal invasiveness to the skin and were safe for application to human skin. In conclusion, placental extracts act as potent bioactive compounds for skin cells, and the highest bioactive potential of GP-loaded DMNs might be a novel approach to regenerate the skin

    In Vitro Biological Activity and In Vivo Human Study of Porcine-Placenta-Extract-Loaded Nanovesicle Formulations for Skin and Hair Rejuvenation

    No full text
    Porcine placenta extract (PPE) contains many water-soluble macromolecular compounds, such as proteins and growth factors, which have limited transportation through the skin. This study aimed to assess the effect of porcine-placenta-extract (PPE)-loaded nano-transdermal systems for skin repair and hair growth promotion. The potentials of the nanoformulation for cytotoxicity, cell proliferation, intracellular reactive oxygen species (ROS) reduction, lipoxygenase inhibition, intracellular inflammatory cytokine reduction, and cell aggregation were evaluated. PPE-entrapped niosome nanovesicles were produced by thin-film hydration and probe-sonication methods, followed by incorporation in a skin serum formulation. The physicochemical properties of the formulation were examined, and the efficacy of the serum formulation was elucidated in humans. The results showed that PPE had no toxicity and was able to induce cell growth and cell aggregation. In addition, PPE significantly decreased intracellular ROS, inhibited lipoxygenase activity, and reduced the production of intracellular tumor necrosis factor-α. In the in vivo human study, the PPE nanovesicles-loaded serum could improve skin properties by increasing skin hydration. Moreover, it was capable of promoting hair growth by increasing hair elongation and melanin index after application for one month. Consequently, the PPE nanovesicles-loaded serum was effective for skin anti-aging and hair rejuvenation
    corecore