79 research outputs found
High energy cosmic-ray interactions with particles from the Sun
Cosmic-ray protons with energies above eV passing near the Sun may
interact with photons emitted by the Sun and be excited to a
resonance. When the decays, it produces pions which further decay to
muons and photons which may be detected with terrestrial detectors. A flux of
muons, photon pairs (from decay), or individual high-energy photons
coming from near the Sun would be a rather striking signature, and the flux of
these particles is a fairly direct measure of the flux of cosmic-ray nucleons,
independent of the cosmic-ray composition. In a solid angle within
around the Sun the flux of photon pairs is about \SI{1.3e-3}{}
particles/(kmyr), while the flux of muons is about \SI{0.33e-3}{}
particles/(kmyr). This is beyond the reach of current detectors like
the Telescope Array, Auger, KASCADE-Grande or IceCube. However, the muon flux
might be detectable by next-generation air shower arrays or neutrino detectors
such as ARIANNA or ARA. We discuss the experimental prospects in some detail.
Other cosmic-ray interactions occuring close to the Sun are also briefly
discussed.Comment: 8 pages, 11 figure
A Gaze Visualizer Tool Implementation Of Gaze Data Into Lighting Rendering Tools Using Radiance And Honeybee For Grasshopper3D
The Gaze Visualizer tool is an implementation of eyetracking (gaze) data and a preliminary gaze responsive light driven (GRL) model, which enables to visualize gaze behavior in a 3D space, in Grasshopper3D. The workflow from obtaining the relevant photometric quantities, retrieving gaze data, intorduction of the GRL model to the tool and a simple data representation scheme are presented here. The final plugin is easy to use for Rhino/Grasshopper developers with only basic skills, and provides a quick estimations of the gaze respionsive visual comfort in an illustrative way, that gives the user an adequate overview of the glare-free zones in the room
Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95
APEC causes a range of infections in poultry, collectively called colibacillosis, and is the leading cause of mortality and is associated with major economic significance in the poultry industry. A growing number of studies have suggested APEC as an external reservoir of human ExPEC, including UPEC, which is a reservoir. ExPEC belonging to ST95 is considered one of the most important pathogens in both poultry and humans. This study is the first in-depth whole-genome-based comparison of ST95 E. coli which investigates both the core genomes as well as the accessory genomes of avian and human ExPEC. We demonstrated that multiple lineages of ExPEC belonging to ST95 exist, of which the majority may cause infection in humans, while only part of the ST95 cluster seem to be avian pathogenic. These findings further support the idea that urinary tract infections may be a zoonotic infection.Avian-pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E. coli (ExPEC) presumed to be zoonotic and to represent an external reservoir for extraintestinal infections in humans, including uropathogenic E. coli (UPEC) causing urinary tract infections. Comparative genomics has previously been applied to investigate whether APEC and human ExPEC are distinct entities. Even so, whole-genome-based studies are limited, and large-scale comparisons focused on single sequence types (STs) are not available yet. In this study, comparative genomic analysis was performed on 323 APEC and human ExPEC genomes belonging to sequence type 95 (ST95) to investigate whether APEC and human ExPEC are distinct entities. Our study showed that APEC of ST95 did not constitute a unique ExPEC branch and was genetically diverse. A large genetic overlap between APEC and certain human ExPEC was observed, with APEC located on multiple branches together with closely related human ExPEC, including nearly identical APEC and human ExPEC. These results illustrate that certain ExPEC clones may indeed have the potential to cause infection in both poultry and humans. Previously described ExPEC-associated genes were found to be encoded on ColV plasmids. These virulence-associated plasmids seem to be crucial for ExPEC strains to cause avian colibacillosis and are strongly associated with strains of the mixed APEC/human ExPEC clusters. The phylogenetic analysis revealed two distinct branches consisting of exclusively closely related human ExPEC which did not carry the virulence-associated plasmids, emphasizing a lower avian virulence potential of human ExPEC in relation to an avian host
Long-term exposure to transportation noise and risk of incident stroke:A pooled study of nine scandinavian cohorts
BACKGROUND: Transportation noise is increasingly acknowledged as a cardiovascular risk factor, but the evidence base for an association with stroke is sparse. OBJECTIVE: We aimed to investigate the association between transportation noise and stroke incidence in a large Scandinavian population. METHODS: We harmonized and pooled data from nine Scandinavian cohorts (seven Swedish, two Danish), totaling 135,951 participants. We identified residential address history and estimated road, railway, and aircraft noise for all addresses. Information on stroke incidence was acquired through link-age to national patient and mortality registries. We analyzed data using Cox proportional hazards models, including socioeconomic and lifestyle con-founders, and air pollution. RESULTS: During follow-up (median = 19:5 y), 11,056 stroke cases were identified. Road traffic noise (Lden ) was associated with risk of stroke, with a hazard ratio (HR) of 1.06 [95% confidence interval (CI): 1.03, 1.08] per 10-dB higher 5-y mean time-weighted exposure in analyses adjusted for indi-vidual-and area-level socioeconomic covariates. The association was approximately linear and persisted after adjustment for air pollution [particulate matter (PM) with an aerodynamic diameter of ≤2:5 lm (PM2:5 ) and NO2 ]. Stroke was associated with moderate levels of 5-y aircraft noise exposure (40–50 vs. ≤40 dB) (HR = 1:12; 95% CI: 0.99, 1.27), but not with higher exposure (≥50 dB, HR = 0:94; 95% CI: 0.79, 1.11). Railway noise was not associated with stroke. DISCUSSION: In this pooled study, road traffic noise was associated with a higher risk of stroke. This finding supports road traffic noise as an important cardiovascular risk factor that should be included when estimating the burden of disease due to traffic noise. https://doi.org/10.1289/EHP8949
HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus
Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class
Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity
A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis
Abstract: Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation
Direct measurement of the formation length of photons
We report the first observation of a shoulder in the radiation spectrum from GeV electrons in a structured target consisting of two thin and closely spaced foils. The position of the shoulder depends on the target spacing and is directly connected to the finite formation length of a low-energy photon emitted by an ultrarelativistic electron.With the present setup it is possible to control the separation of the foils on a m scale and hence measure interference effects caused by the macroscopic dimensions of the formation length. Several theoretical groups have predicted this effect using different methods. Our observations have a preference for the modified theory by Blankenbecler but disagree with the results of Baier and Katkov
- …