4 research outputs found

    Engineering and Geophysical Research of the Tailing Dump under the Conditions of Growing Soils of the Base

    No full text
    The relevance of the work is due to the risks of an uncontrolled increase in circulating water leaks through sides and bed of the dam, caused by thawing of permafrost soils in the Far North. The main aim of the work is to scientifically substantiate a set of engineering measures to reduce filtration consumption and restore and maintain the waterproofing of the tailing dump. The object of the study was the tailing dump of the concentration plant, with adjoining filter walls. The tailing dump has been exploited since 1996; for the last 20 years, circulating water leaks into the shunting tank located below were recorded. Within the water area of the tailing dump and at the landfalls, geophysical surveys were carried out from ice by the TEM (transient electromagnetic) method. The obtained geoelectric sections made it possible to form a holistic view of the structure of the filtration zones in the right and left bank junctions. The data obtained will be used for planning anti-filtration arrangement

    Hydrochemical Anomalies in the Vicinity of the Abandoned Molybdenum Ores Processing Tailings in a Permafrost Region (Shahtama, Transbaikal Region)

    No full text
    The mobility of chemical elements during the transition from molybdenum ore processing waste to aqueous solutions and the hydrochemical anomalies of a number of elements in surface and underground waters in the vicinity of an abandoned tailings dump were investigated. It is shown that alkaline and alkaline earth metals have high mobility—the main rock-forming components (sodium, lithium, magnesium, strontium), which are released into solution due to leaching from the minerals of the host rocks, as well as metals with zinc, cadmium, manganese, and nickel, which are released into solution due to the dissolution of ore sulfides. Elements with high mobility include Sb, Co, Cu, Be, Se, and Tl. Medium mobility has As, an element of the first hazard class, as well as Mo, Fe, and Pb. Hydrochemical anomalies of cadmium, arsenic, molybdenum, and lead have been determined. The nature of the arsenic and molybdenum anomalies is most likely related to the regional background, while the source of cadmium and lead is most likely the waste studied. The main chemical forms of the presence of elements in the solution of ponds on the surface of tailings ponds are free-ion and sulfate complexes. For example, in the samples of the Shakhtama River and groundwater, we found carbonate, bicarbonate, and hydroxide complexes. The information obtained should be taken into account when planning measures for the purification of surface and groundwater from metals. Additional studies should consider using groundwater in the vicinity of the tailings for drinking water supply

    Current State of the Gold Mining Waste from the Ores of the Ursk Deposit (Western Siberia, Russia)

    No full text
    The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure of the dump and the drainage valley was determined using the electrical resistivity tomography (ERT) method. Magnetic anomalies above the surface of the site were identified using ground magnetic surveys. The orthophotomap and a digital elevation model were obtained on the basis of aerial photography from an unmanned aircraft. The model of thermal imaging allows us to identify a number of temperature anomalies in the upper part of the dump slope and filtration zone in the drainage valley, caused by exothermic reactions. The digital relief model was constructed comprising three zones: (1) oxidation, (2) leaching, and (3) mixing and dilution. The oxidation zone is marked by low electrical resistivity (1–10 Ω·m), low pH values of the drainage waters (pH 3.61), low values of the modulus of the magnetic induction vector, and heating by +5 °C compared to the solid dump material that is not actively exposed to water. The oxidative conditions and low pH values favor the dilution of the Fe2+ compounds in the drainage solutions, which also contain Cu (3000 μg/L), Pb (1200 μg/L), As (1300 μg/L), and Hg (34 μg/L). The zone of the primary geochemical barrier is formed within the first 400 m, where the major proportion of dissolved elements if deposited. The second iron–aluminum sorption geochemical barrier is formed at a distance of 1000 m at the mixing zone with the Ur River. The stable geochemistry of surface waters, formed due to the inflow of drainage waters into the Ur River and further into the reservoir, persists at a distance of up to 7.7 km from the dump

    Current State of the Gold Mining Waste from the Ores of the Ursk Deposit (Western Siberia, Russia)

    No full text
    The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure of the dump and the drainage valley was determined using the electrical resistivity tomography (ERT) method. Magnetic anomalies above the surface of the site were identified using ground magnetic surveys. The orthophotomap and a digital elevation model were obtained on the basis of aerial photography from an unmanned aircraft. The model of thermal imaging allows us to identify a number of temperature anomalies in the upper part of the dump slope and filtration zone in the drainage valley, caused by exothermic reactions. The digital relief model was constructed comprising three zones: (1) oxidation, (2) leaching, and (3) mixing and dilution. The oxidation zone is marked by low electrical resistivity (1–10 Ω·m), low pH values of the drainage waters (pH 3.61), low values of the modulus of the magnetic induction vector, and heating by +5 °C compared to the solid dump material that is not actively exposed to water. The oxidative conditions and low pH values favor the dilution of the Fe2+ compounds in the drainage solutions, which also contain Cu (3000 μg/L), Pb (1200 μg/L), As (1300 μg/L), and Hg (34 μg/L). The zone of the primary geochemical barrier is formed within the first 400 m, where the major proportion of dissolved elements if deposited. The second iron–aluminum sorption geochemical barrier is formed at a distance of 1000 m at the mixing zone with the Ur River. The stable geochemistry of surface waters, formed due to the inflow of drainage waters into the Ur River and further into the reservoir, persists at a distance of up to 7.7 km from the dump
    corecore