13 research outputs found
Results from 15 years of quality surveillance for a National Indigenous Point-of-Care Testing Program for diabetes
© 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This author accepted manuscript is made available following 12 month embargo from date of publication (July 2017) in accordance with the publisher’s archiving policyIntroduction
Diabetes is a major health problem for Australia's Aboriginal and Torres Strait Islander peoples. Point-of-care testing for haemoglobin A1c (HbA1c) has been the cornerstone of a long-standing program (QAAMS) to manage glycaemic control in Indigenous people with diabetes and recently, to diagnose diabetes.
Methods
The QAAMS quality management framework includes monthly testing of quality control (QC) and external quality assurance (EQA) samples. Key performance indicators of quality include imprecision (coefficient of variation [CV%]) and percentage acceptable results. This paper reports on the past 15 years of quality testing in QAAMS and examines the performance of HbA1c POC testing at the 6.5% cut-off recommended for diagnosis.
Results
The total number of HbA1c EQA results submitted from 2002 to 2016 was 29,093. The median imprecision for EQA testing by QAAMS device operators averaged 2.81% (SD 0.50; range 2.2 to 3.9%) from 2002 to 2016 and 2.44% (SD 0.22; range 2.2 to 2.9%) from 2009 to 2016. No significant difference was observed between the median imprecision achieved in QAAMS and by Australasian laboratories from 2002 to 2016 (p = 0.05; two-tailed paired t-test) and from 2009 to 2016 (p = 0.17; two-tailed paired t-test). For QC testing from 2009 to 2016, imprecision averaged 2.5% and 3.0% for the two levels of QC tested. Percentage acceptable results averaged 90% for QA testing from 2002 to 2016 and 96% for QC testing from 2009 to 2016. The DCA Vantage was able to measure a patient and an EQA sample with an HbA1c value close to 6.5% both accurately and precisely.
Conclusion
HbA1c POC testing in QAAMS has remained analytically sound, matched the quality achieved by Australasian laboratories and met profession-derived analytical goals for 15 years
A genome-wide association search for type 2 diabetes genes in African Americans.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations
Calling All Curators: A Novel Approach to Individualized Interactive Instruction
With the increasing influence of the “Free Open Access Medical Education” (FOAM or FOAMed) movement, it is critical that medical educators be engaged with FOAM in order to better inform and direct their learners, who likely regularly consume these materials. In 2012, the Accreditation Council for Graduate Medical Education (ACGME)/Residency Review Committee (RRC) began to permit 20% of emergency medicine (EM) residents’ didactics hours to be earned outside of weekly conference, as “Individualized Interactive Instruction” (III) credits. 1 We describe a digital course in EM, “Asynchrony,” as an approach to FOAM to meet these III standards. Asynchrony is geared toward EM residents using FOAM and other online learning tools, curated by faculty into narrative, topic-specific educational modules. Each module requires residents to complete a topic assignment, participate in a discussion board, and pass a quiz to earn ACGME-approved III didactic credit; all of this is tracked and filed in an online learning management system
Calling All Curators: A Novel Approach to Individualized Interactive Instruction
With the increasing influence of the “Free Open Access Medical Education” (FOAM or FOAMed) movement, it is critical that medical educators be engaged with FOAM in order to better inform and direct their learners, who likely regularly consume these materials. In 2012, the Accreditation Council for Graduate Medical Education (ACGME)/Residency Review Committee (RRC) began to permit 20% of emergency medicine (EM) residents’ didactics hours to be earned outside of weekly conference, as “Individualized Interactive Instruction” (III) credits.1 We describe a digital course in EM, “Asynchrony,” as an approach to FOAM to meet these III standards. Asynchrony is geared toward EM residents using FOAM and other online learning tools, curated by faculty into narrative, topic-specific educational modules. Each module requires residents to complete a topic assignment, participate in a discussion board, and pass a quiz to earn ACGME-approved III didactic credit; all of this is tracked and filed in an online learning management system
Recommended from our members
Calling All Curators: A Novel Approach to Individualized Interactive Instruction
With the increasing influence of the “Free Open Access Medical Education” (FOAM or FOAMed) movement, it is critical that medical educators be engaged with FOAM in order to better inform and direct their learners, who likely regularly consume these materials. In 2012, the Accreditation Council for Graduate Medical Education (ACGME)/Residency Review Committee (RRC) began to permit 20% of emergency medicine (EM) residents’ didactics hours to be earned outside of weekly conference, as “Individualized Interactive Instruction” (III) credits.1 We describe a digital course in EM, “Asynchrony,” as an approach to FOAM to meet these III standards. Asynchrony is geared toward EM residents using FOAM and other online learning tools, curated by faculty into narrative, topic-specific educational modules. Each module requires residents to complete a topic assignment, participate in a discussion board, and pass a quiz to earn ACGME-approved III didactic credit; all of this is tracked and filed in an online learning management system
Severe Hyperkalemia: Can the Electrocardiogram Risk Stratify for Short-term Adverse Events?
Introduction: The electrocardiogram (ECG) is often used to identify which hyperkalemic patients are atrisk for adverse events. However, there is a paucity of evidence to support this practice. This studyanalyzes the association between specific hyperkalemic ECG abnormalities and the development ofshort-term adverse events in patients with severe hyperkalemia.Methods: We collected records of all adult patients with potassium (K+) ≥6.5 mEq/L in the hospitallaboratory database from August 15, 2010, through January 30, 2015. A chart review identified patientdemographics, concurrent laboratory values, ECG within one hour of K+ measurement, treatments andoccurrence of adverse events within six hours of ECG. We defined adverse events as symptomaticbradycardia, ventricular tachycardia, ventricular fibrillation, cardiopulmonary resuscitation (CPR) and/ordeath. Two emergency physicians blinded to study objective independently examined each ECG forrate, rhythm, peaked T wave, PR interval duration and QRS complex duration. Relative risk wascalculated to determine the association between specific hyperkalemic ECG abnormalities and shorttermadverse events.Results: We included a total of 188 patients with severe hyperkalemia in the final study group. Adverseevents occurred within six hours in 28 patients (15%): symptomatic bradycardia (n=22), death (n=4),ventricular tachycardia (n=2) and CPR (n=2). All adverse events occurred prior to treatment with calciumand all but one occurred prior to K+-lowering intervention. All patients who had a short-term adverse eventhad a preceding ECG that demonstrated at least one hyperkalemic abnormality (100%, 95% confidenceinterval [CI] [85.7-100%]). An increased likelihood of short-term adverse event was found forhyperkalemic patients whose ECG demonstrated QRS prolongation (relative risk [RR] 4.74, 95% CI[2.01-11.15]), bradycardia (HR<50) (RR 12.29, 95%CI [6.69-22.57]), and/or junctional rhythm (RR 7.46,95%CI 5.28-11.13). There was no statistically significant correlation between peaked T waves andshort-term adverse events (RR 0.77, 95% CI [0.35-1.70]).Conclusion: Our findings support the use of the ECG to risk stratify patients with severehyperkalemia for short-term adverse events. [West J Emerg Med. 2017;18(5)963-971.
Severe Hyperkalemia: Can the Electrocardiogram Risk Stratify for Short-term Adverse Events?
Introduction: The electrocardiogram (ECG) is often used to identify which hyperkalemic patients are at risk for adverse events. However, there is a paucity of evidence to support this practice. This study analyzes the association between specific hyperkalemic ECG abnormalities and the development of short-term adverse events in patients with severe hyperkalemia. Methods: We collected records of all adult patients with potassium (K+) ≥6.5 mEq/L in the hospital laboratory database from August 15, 2010, through January 30, 2015. A chart review identified patient demographics, concurrent laboratory values, ECG within one hour of K+ measurement, treatments and occurrence of adverse events within six hours of ECG. We defined adverse events as symptomatic bradycardia, ventricular tachycardia, ventricular fibrillation, cardiopulmonary resuscitation (CPR) and/or death. Two emergency physicians blinded to study objective independently examined each ECG for rate, rhythm, peaked T wave, PR interval duration and QRS complex duration. Relative risk was calculated to determine the association between specific hyperkalemic ECG abnormalities and short-term adverse events. Results: We included a total of 188 patients with severe hyperkalemia in the final study group. Adverse events occurred within six hours in 28 patients (15%): symptomatic bradycardia (n=22), death (n=4), ventricular tachycardia (n=2) and CPR (n=2). All adverse events occurred prior to treatment with calcium and all but one occurred prior to K +-lowering intervention. All patients who had a short-term adverse event had a preceding ECG that demonstrated at least one hyperkalemic abnormality (100%, 95% confidence interval [CI] [85.7–100%]). An increased likelihood of short-term adverse event was found for hyperkalemic patients whose ECG demonstrated QRS prolongation (relative risk [RR] 4.74, 95% CI [2.01–11.15]), bradycardia (HR<50) (RR 12.29, 95%CI [6.69–22.57]), and/or junctional rhythm (RR 7.46, 95%CI 5.28–11.13). There was no statistically significant correlation between peaked T waves and short-term adverse events (RR 0.77, 95% CI [0.35–1.70]). Conclusion: Our findings support the use of the ECG to risk stratify patients with severe hyperkalemia for short-term adverse events
Loneliness in Schizophrenia
This data set contains 222 participants, 116 schizophrenic or schizoaffective and 106 control. Data included current anti-psychotic medication use; records of clinical data, socio-demographic data, a battery of tests assessing the severity of schizophrenic psychopathology, a battery of tests assessing positive psychological factors and the individual items scores and accompanying total score for the UCLA 3 loneliness scale
Hindsight Bias in Depression Dataset
Dataset of hindsight ratings of 16 scenarios with either positive or negative outcomes and BDI ratings of 60 German participants