3 research outputs found

    Mad2 Induced Aneuploidy Contributes to Eml4-Alk Driven Lung Cancer by Generating an Immunosuppressive Environment

    No full text
    Aneuploidy, an imbalance number of chromosomes, is frequently observed in lung cancer and inversely correlates with patient survival. Paradoxically, an aneuploid karyotype has detrimental consequences on cellular fitness, and it has been proposed that aneuploid cells, at least in vitro, generate signals for their own elimination by NK cells. However, how aneuploidy affects tumor progression as well as the interplay between aneuploid tumor cells and the tumor microenvironment is still unclear. We generated a new mouse model in which overexpression of Mad2 was almost entirely restricted to normal epithelial cells of the lung, and combined it with an oncogenic Eml4-Alk chromosome inversion. This combination resulted in a higher tumor burden and an increased number of tumor nodules compared to control Eml4-Alk mice alone. The FISH analysis detected significant differences in the aneuploidy levels in the non-tumor regions of Eml4-Alk+Mad2 compared to Eml4-Alk alone, although both tumor groups presented similar levels of aneuploidy. We further show that aneuploid cells in the non-tumor areas adjacent to lung tumors recruit immune cells, such as tumor-associated macrophages. In fact, these areas presented an increase in alveolar macrophages, neutrophils, decreased cytotoxic CD8+ T cells, and IFN-γ, suggesting that aneuploid cells in the surrounding tumor areas create an immunosuppressive signature that might contribute to lung tumor initiation and progression

    Repression of the iron exporter ferroportin may contribute to hepatocyte iron overload in individuals with type 2 diabetes

    No full text
    Objective: Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. Methods: Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. Results: We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. Conclusion: Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM
    corecore