11 research outputs found

    Phase synchronisation in the Kuroshio Current System

    Get PDF
    The Kuroshio Current System in the North Pacific displays path transitions on a decadal timescale. It is known that both internal variability involving barotropic and baroclinic instabilities and remote Rossby waves induced by North Pacific wind stress anomalies are involved in these path transitions. However, the precise coupling of both processes and its consequences for the dominant decadal transition timescale are still under discussion. Here, we analyse the output of a multi-centennial high-resolution global climate model simulation and study phase synchronisation between Pacific zonal wind stress anomalies and Kuroshio Current System path variability. We apply the Hilbert transform technique to determine the phase and find epochs where such phase synchronisation appears. The physics of this synchronisation are shown to occur through the effect of the vertical motion of isopycnals, as induced by the propagating Rossby waves, on the instabilities of the Kuroshio Current System

    Phase synchronisation in the Kuroshio Current System

    No full text
    The Kuroshio Current System in the North Pacific displays path transitions on a decadal timescale. It is known that both internal variability involving barotropic and baroclinic instabilities and remote Rossby waves induced by North Pacific wind stress anomalies are involved in these path transitions. However, the precise coupling of both processes and its consequences for the dominant decadal transition timescale are still under discussion. Here, we analyse the output of a multi-centennial high-resolution global climate model simulation and study phase synchronisation between Pacific zonal wind stress anomalies and Kuroshio Current System path variability. We apply the Hilbert transform technique to determine the phase and find epochs where such phase synchronisation appears. The physics of this synchronisation are shown to occur through the effect of the vertical motion of isopycnals, as induced by the propagating Rossby waves, on the instabilities of the Kuroshio Current System

    Effect of the duration of estradiol priming prior to progesterone administration on endometrial gene expression in anestrous mares

    No full text
    Field data indicate that a longer period of estrus prior to ovulation correlates positively with fertility. To test the hypothesis that the duration of exposure to estrogens prior to progesterone dominance influences endometrial function, we used anestrous mares to simulate varying durations of estrus (3 groups of 5 mares): long (LE), short (SE), and no estrus (NE), as determined by the duration of estradiol priming prior to progesterone treatment: 7, 2 and 0 days for the LE, SE and NE, respectively. Endometrial biopsies were recovered 4 days after progesterone administration in all groups for real time quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical analyses. A total of 17 genes believed to contribute to a "receptive endometrium" for embryo development and viability were evaluated by RT-qPCR. Of the genes evaluated, the expression of FGF-2 (fibroblast growth factor-2) decreased with increased length of preceding estrus, whereas P19 (uterocalin) expression was higher in the LE than in the SE or NE groups. In conclusion, a lower abundance of FGF-2 and higher abundance of uterocalin, a lipocalin protein known to play an important role in providing lipids to the embryo, could contribute to a more receptive endometrium in mares following a long estrus

    Effect of the duration of estradiol priming prior to progesterone administration on endometrial gene expression in anestrous mares

    No full text
    Field data indicate that a longer period of estrus prior to ovulation correlates positively with fertility. To test the hypothesis that the duration of exposure to estrogens prior to progesterone dominance influences endometrial function, we used anestrous mares to simulate varying durations of estrus (3 groups of 5 mares): long (LE), short (SE), and no estrus (NE), as determined by the duration of estradiol priming prior to progesterone treatment: 7, 2 and 0 days for the LE, SE and NE, respectively. Endometrial biopsies were recovered 4 days after progesterone administration in all groups for real time quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical analyses. A total of 17 genes believed to contribute to a "receptive endometrium" for embryo development and viability were evaluated by RT-qPCR. Of the genes evaluated, the expression of FGF-2 (fibroblast growth factor-2) decreased with increased length of preceding estrus, whereas P19 (uterocalin) expression was higher in the LE than in the SE or NE groups. In conclusion, a lower abundance of FGF-2 and higher abundance of uterocalin, a lipocalin protein known to play an important role in providing lipids to the embryo, could contribute to a more receptive endometrium in mares following a long estrus

    Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction

    No full text
    Background: Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. Methods: Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. Results: We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA–expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. Conclusions: Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.ISSN:1757-651

    CD8αα intraepithelial lymphocytes arise from two main thymic precursors

    No full text
    TCRαβ+CD4−CD8α+CD8β− intestinal intraepithelial lymphocytes (CD8αα IELs) are an abundant population of thymus-derived T cells that protect the gut barrier surface. We sought to better define the thymic IEL precursor (IELp) through analysis of its maturation, localization and emigration. We defined two precursor populations among TCRβ+CD4−CD8− thymocytes by dependence on the kinase TAK1 and rigorous lineage-exclusion criteria. Those IELp populations included a nascent PD-1+ population and a T-bet+ population that accumulated with age. Both gave rise to intestinal CD8αα IELs after adoptive transfer. The PD-1+ IELp population included more strongly self-reactive clones and was largely restricted by classical major histocompatibility complex (MHC) molecules. Those cells localized to the cortex and efficiently emigrated in a manner dependent on the receptor S1PR1. The T-bet+ IELp population localized to the medulla, included cells restricted by non-classical MHC molecules and expressed the receptor NK1.1, the integrin CD103 and the chemokine receptor CXCR3. The two IELp populations further differed in their use of the T cell antigen receptor (TCR) α-chain variable region (Vα) and β-chain variable region (Vβ). These data provide a foundation for understanding the biology of CD8αα IELs
    corecore