14 research outputs found
Chlamydial biology and its associated virulence blockers
Chlamydiales are obligate intracellular parasites of eukaryotic cells. They can be distinguished from other Gram-negative bacteria through their characteristic developmental cycle, in addition to special biochemical and physical adaptations to subvert the eukaryotic host cell. The host spectrum includes humans and other mammals, fish, birds, reptiles, insects and even amoeba, causing a plethora of diseases. The first part of this review focuses on the specific chlamydial infection biology and metabolism. As resistance to classical antibiotics is emerging among Chlamydiae as well, the second part elaborates on specific compounds and tools to block chlamydial virulence traits, such as adhesion and internalization, Type III secretion and modulation of gene expression
Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans.
Pigs are the natural host for Chlamydia suis, a pathogen which is phylogenetically highly related to the human pathogen C. trachomatis. Chlamydia suis infections are generally treated with tetracyclines. In 1998, tetracyline resistant C. suis strains emerged on U.S. pig farms and they are currently present in the Belgian, Cypriote, German, Israeli, Italian and Swiss pig industry. Infections with tetracycline resistant C. suis strains are mainly associated with severe reproductive failure leading to marked economical loss. We developed a sensitive and specific TaqMan probe-based C. suis real-time PCR for examining clinical samples of both pigs and humans. The analytical sensitivity of the real-time PCR is 10 rDNA copies/reaction without cross-amplifying DNA of other Chlamydia species. The PCR was successfully validated using conjunctival, pharyngeal and stool samples of slaughterhouse employees, as well as porcine samples from two farms with evidence of reproductive failure and one farm without clinical disease. Chlamydia suis was only detected in diseased pigs and in the eyes of humans. Positive humans had no clinical complaints. PCR results were confirmed by culture in McCoy cells. In addition, Chlamydia suis isolates were also examined by the tet(C) PCR, designed for demonstrating the tetracycline resistance gene tet(C). The tet(C) gene was only present in porcine C. suis isolates
Transferrins reduce replication of chlamydia suis in McCoy cells
Chlamydia suis (C. suis) resides in the intestines of pigs and tetracycline-resistant strains are emerging worldwide. Intestinal infections are often subclinical. However, the gut is regarded as a C. suis reservoir and clinical infections have been associated with enteritis, conjunctivitis, pneumonia and reproductive failure. C. suis was found in boar semen and venereal transmission occurred. We studied the anti-Chlamydia suis activity of ovotransferrin (ovoTF) and bovine lactoferrin (bLF). Pre-incubation of C. suis with bLF or ovoTF had no significant effect on overall chlamydia replication (mean fluorescence area) in McCoy cells. The addition of ovoTF to the culture medium had no effect on bacterial replication, but the addition of 0.5 or 5 mg/mL of bLF significantly reduced the inclusion size by 17% and 15% respectively. Egg components are used for cryopreservation of boar semen. When inoculating an ovoTF-containing and Chlamydia suis-spiked semen sample in McCoy cells, a significant reduction in inclusion number (by 7%) and overall replication (by 11%) was observed. Thus, we showed that transferrins possess anti-chlamydial activity. Moreover, ovoTF addition to semen extenders might reduce C. suis venereal transmission. Further research is needed to unravel the mechanisms behind the observations and to enhance the effect of transferrins on C. suis
Assessment of Chlamydia suis infection in pig farmers
Chlamydia suis infections are endemic in domestic pigs in Europe and can lead to conjunctivitis, pneumonia, enteritis and reproductive failure. Currently, the knowledge on the zoonotic potential of C.suis is limited. Moreover, the last decades, porcine tetracycline resistant C.suis strains have been isolated, which interfere with treatment of chlamydial infections. In this study, the presence of C.suis was examined on nine Belgian pig farms, using Chlamydia culture and a C.suis specific real-time PCR in both pigs and farmers. In addition to diagnosis for C.suis, the farmers' samples were examined using a Chlamydia trachomatis PCR. Additionally, the Chlamydia isolates were tested for the presence of the tet(C) resistance gene. C. DNA was demonstrated in pigs on all farms, and eight of nine farmers were positive in at least one anatomical site. None of the farmers tested positive for C. trachomatis. Chlamydia suis isolates were obtained from pigs of eight farms. Nine porcine C.suis isolates possessing a tet(C) gene were retrieved, originating from three farms. Moreover, C.suis isolates were identified in three human samples, including one pharyngeal and two rectal samples. These findings suggest further research on the zoonotic transfer of C.suis from pigs to humans is needed
Transferrins reduce replication of Chlamydia suis in McCoy cells
Chlamydia suis (C. suis) resides in the intestines of pigs and tetracycline-resistant strains are emerging worldwide. Intestinal infections are often subclinical. However, the gut is regarded as a C. suis reservoir and clinical infections have been associated with enteritis, conjunctivitis, pneumonia and reproductive failure. C. suis was found in boar semen and venereal transmission occurred. We studied the anti-Chlamydia suis activity of ovotransferrin (ovoTF) and bovine lactoferrin (bLF). Pre-incubation of C. suis with bLF or ovoTF had no significant effect on overall chlamydia replication (mean fluorescence area) in McCoy cells. The addition of ovoTF to the culture medium had no effect on bacterial replication, but the addition of 0.5 or 5 mg/mL of bLF significantly reduced the inclusion size by 17% and 15% respectively. Egg components are used for cryopreservation of boar semen. When inoculating an ovoTF-containing and Chlamydia suis-spiked semen sample in McCoy cells, a significant reduction in inclusion number (by 7%) and overall replication (by 11%) was observed. Thus, we showed that transferrins possess anti-chlamydial activity. Moreover, ovoTF addition to semen extenders might reduce C. suis venereal transmission. Further research is needed to unravel the mechanisms behind the observations and to enhance the effect of transferrins on C. suis