77 research outputs found

    Mucosal microbiome is predictive of pediatric Crohn’s disease across geographic regions in North America [version 2; peer review: 2 approved]

    Get PDF
    Background: Patients with Crohn’s disease (CD) have an altered intestinal microbiome, which may facilitate novel diagnostic testing. However, accuracy of microbiome classification models across geographic regions may be limited. Therefore, we sought to examine geographic variation in the microbiome of patients with CD from North America and test the performance of a machine learning classification model across geographic regions. Methods: The RISK cohort included 447 pediatric patients with CD and 221 non-inflammatory bowel disease controls from across North America. Terminal ileum, rectal and fecal samples were obtained prior to treatment for microbiome analysis. We divided study sites into 3 geographic regions to examine regional microbiome differences. We trained and tested the performance of a machine learning classification model across these regions. Results: No differences were seen in the mucosal microbiome of patients with CD across regions or in either the fecal or mucosal microbiomes of controls. Machine learning classification algorithms for patients with CD performed well across regions (area under the receiver operating characteristic curve [AUROC] range of 0.85-0.91) with the best results from terminal ileum. Conclusions: This study demonstrated the feasibility of microbiome based diagnostic testing in pediatric patients with CD within North America, independently from regional influences

    The Impact of the Th17:Treg axis On the Iga-Biome across the Glycemic Spectrum

    Get PDF
    Secretory IgA (SIgA) is released into mucosal surfaces where its function extends beyond that of host defense to include the shaping of resident microbial communities by mediating exclusion/inclusion of respective microbes and regulating bacterial gene expression. In this capacity, SIgA acts as the fulcrum on which host immunity and the health of the microbiota are balanced. We recently completed an analysis of the gut and salivary IgA-Biomes (16S rDNA sequencing of SIgA-coated/uncoated bacteria) in Mexican-American adults that identified IgA-Biome differences across the glycemic spectrum. As Th17:Treg ratio imbalances are associated with gut microbiome dysbiosis and chronic inflammatory conditions such as type 2 diabetes, the present study extends our prior work by examining the impact of Th17:Treg ratios (pro-inflammatory:anti-inflammatory T-cell ratios) and the SIgA response (Th17:Treg-SIgA axis) in shaping microbial communities. Examining the impact of Th17:Treg ratios (determined by epigenetic qPCR lymphocyte subset quantification) on the IgA-Biome across diabetes phenotypes identified a proportional relationship between Th17:Treg ratios and alpha diversity in the stool IgA-Biome of those with dysglycemia, significant changes in community composition of the stool and salivary microbiomes across glycemic profiles, and genera preferentially abundant by T-cell inflammatory phenotype. This is the first study to associate epigenetically quantified Th17:Treg ratios with both the larger and SIgA-fractionated microbiome, assess these associations in the context of a chronic inflammatory disease, and offers a novel frame through which to evaluate mucosal microbiomes in the context of host responses and inflammation

    Iga-Biome Profiles Correlate With Clinical Parkinson\u27s Disease Subtypes

    Get PDF
    BACKGROUND: Parkinson\u27s disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE: Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson\u27s disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS: Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS: IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson\u27s disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION: IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches

    Iga-Biome Profiles Correlate With Clinical Parkinson\u27s Disease Subtypes

    Get PDF
    BACKGROUND: Parkinson\u27s disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE: Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson\u27s disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS: Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS: IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson\u27s disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION: IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches

    Multiple RSV strains infecting HEp-2 and A549 cells reveal cell line-dependent differences in resistance to RSV infection

    Get PDF
    Background: Respiratory syncytial virus (RSV) is the major viral driver of a global pediatric respiratory disease burden disproportionately borne by the poor1. Thus, RSV, like SARS-CoV-2, combines with congenital and environmental and host-history-dependent factors to create a spectrum of disease with greatest severity most frequently occurring in those least able to procure treatment. Methods: Here we apply whole genome sequencing and a suite of other molecular biological techniques to survey host-virus dynamics in infections of two distinct cell lines (HEp2 and A549) with four strains representative of known RSV genetic diversity. Results: We observed non-gradient patterns of RSV gene expression and a single major difference in transcriptional readthrough correlating with a deep split in the RSV phylogenetic tree. We also observed increased viral replication in HEp2 cells along with a pro-inflammatory host-response; and decreased viral replication in A549 cells with a more potent antiviral response in host gene expression and levels of secreted cytokines. Conclusions: Our findings suggest HEp2 and A549 cell lines can be used as complementary models of host response leading to more or less severe RSV disease. In vitro perturbations inspired by actual environmental and host-history-dependent factors associated with greater disease can be tested for their ability to shift the antiviral response of A549 cells to the more pro-inflammatory response of HEp2 cells. Such studies would help illuminate the tragic costs of poverty and suggest public health-level interventions to reduce the global disease burden from RSV and other respiratory viruses

    Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial

    Get PDF
    AIMS/HYPOTHESIS Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6~months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6~months to 2.99~years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5~mg with dose escalation to 67.5~mg) or placebo for 12~months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.)

    Fully Resolved assembly of Cryptosporidium Parvum

    Get PDF
    BACKGROUND: Cryptosporidium parvum is an apicomplexan parasite commonly found across many host species with a global infection prevalence in human populations of 7.6%. Understanding its diversity and genomic makeup can help in fighting established infections and prohibiting further transmission. The basis of every genomic study is a high-quality reference genome that has continuity and completeness, thus enabling comprehensive comparative studies. FINDINGS: Here, we provide a highly accurate and complete reference genome of Cryptosporidium parvum. The assembly is based on Oxford Nanopore reads and was improved using Illumina reads for error correction. We also outline how to evaluate and choose from different assembly methods based on 2 main approaches that can be applied to other Cryptosporidium species. The assembly encompasses 8 chromosomes and includes 13 telomeres that were resolved. Overall, the assembly shows a high completion rate with 98.4% single-copy BUSCO genes. CONCLUSIONS: This high-quality reference genome of a zoonotic IIaA17G2R1 C. parvum subtype isolate provides the basis for subsequent comparative genomic studies across the Cryptosporidium clade. This will enable improved understanding of diversity, functional, and association studies

    Wastewater Sequencing Reveals Community and Variant Dynamics of the Collective Human Virome

    Get PDF
    Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health
    • …
    corecore