3,964 research outputs found

    Protostellar half-life: new methodology and estimates

    Full text link
    (Abridged) Protostellar systems evolve from prestellar cores, through the deeply embedded stage and then disk-dominated stage, before they end up on the main sequence. Knowing how much time a system spends in each stage is crucial for understanding how stars and associated planetary systems form, because a key constraint is the time available to form such systems. Equally important is understanding what the spread in these time scales is. The most commonly used method for inferring protostellar ages is to assume the lifetime of one evolutionary stage, and then scale this to the relative number of protostars in the other stages, i.e., assuming steady state. This method does not account for the underlying age distribution and apparent stochasticity of star formation, nor that relative populations are not in steady state. To overcome this, we propose a new scheme where the lifetime of each protostellar stage follows a distribution based on the formalism of sequential nuclear decay. The main assumptions are: Class 0 sources follow a straight path to Class III sources, the age distribution follows a binomial distribution, and the star-formation rate is constant. The results are that the half-life of Class 0, Class I, and Flat sources are (2.4+/-0.2)%, (4.4+/-0.3)%, and (4.3+/-0.4)% of the Class II half-life, respectively, which translates to 47+/-4, 88+/-7, and 87+/-8 kyr, respectively, for a Class II half-life of 2 Myr for protostars in the Gould Belt clouds with more than 100 protostars. The mean age of these clouds is 1.2+/-0.1 Myr, and the star formation rate is (8.3+/-0.5)x10^-4 Msun/yr. The critical parameters in arriving at these numbers are the assumed half-life of the Class II stage, and the assumption that the star-formation rate and half-lives are constant. This method presents a first step in moving from steady-state to non-steady-state solutions of protostellar populations.Comment: Accepted for publication in A&

    ALMA CO J=6-5 observations of IRAS16293-2422: Shocks and entrainment

    Full text link
    Observations of higher-excited transitions of abundant molecules such as CO are important for determining where energy in the form of shocks is fed back into the parental envelope of forming stars. The nearby prototypical and protobinary low-mass hot core, IRAS16293-2422 (I16293) is ideal for such a study. The source was targeted with ALMA for science verification purposes in band 9, which includes CO J=6-5 (E_up/k_B ~ 116 K), at an unprecedented spatial resolution (~0.2", 25 AU). I16293 itself is composed of two sources, A and B, with a projected distance of 5". CO J=6-5 emission is detected throughout the region, particularly in small, arcsecond-sized hotspots, where the outflow interacts with the envelope. The observations only recover a fraction of the emission in the line wings when compared to data from single-dish telescopes, with a higher fraction of emission recovered at higher velocities. The very high angular resolution of these new data reveal that a bow shock from source A coincides, in the plane of the sky, with the position of source B. Source B, on the other hand, does not show current outflow activity. In this region, outflow entrainment takes place over large spatial scales, >~ 100 AU, and in small discrete knots. This unique dataset shows that the combination of a high-temperature tracer (e.g., CO J=6-5) and very high angular resolution observations is crucial for interpreting the structure of the warm inner environment of low-mass protostars.Comment: Accepted for publication in A&A Letter

    Water emission tracing active star formation from the Milky Way to high-zz galaxies

    Full text link
    (Abridged) The question of how most stars in the Universe form remains open. While star formation predominantly occurs in young massive clusters, the current framework focuses on isolated star formation. One way to access the bulk of protostellar activity within star-forming clusters is to trace signposts of active star formation with emission from molecular outflows. These outflows are bright in water emission, providing a direct observational link between nearby and distant galaxies. We propose to utilize the knowledge of local star formation as seen with molecular tracers to explore the nature of star formation in the Universe. We present a large-scale statistical galactic model of emission from galactic active star-forming regions. Our model is built on observations of well-resolved nearby clusters. By simulating emission from molecular outflows, which is known to scale with mass, we create a proxy that can be used to predict the emission from clustered star formation at galactic scales. We evaluated the impact of the most important global-star formation parameters (i.e., initial stellar mass function (IMF), molecular cloud mass distribution, star formation efficiency (SFE), and free-fall time efficiency) on simulation results. We observe that for emission from the para-H2O 202 - 111 line, the IMF and molecular cloud mass distribution have a negligible impact on the emission, both locally and globally, whereas the opposite holds for the SFE and free-fall time efficiency. Moreover, this water transition proves to be a low-contrast tracer of star formation. The fine-tuning of the model and adaptation to morphologies of distant galaxies should result in realistic predictions of observed molecular emission and make the galaxy-in-a-box model a tool to analyze and better understand star formation throughout cosmological times.Comment: Accepted for publication in A&A. 16 pages, 13 figure

    Star-formation-rate estimates from water emission

    Full text link
    (Abridged) The star-formation rate (SFR) quantitatively describes the star-formation process in galaxies. Current ways to calibrate this rate do not usually employ observational methods accounting for the low-mass end of stellar populations as their signatures are too weak. Accessing the bulk of protostellar activity within galactic star-forming regions can be achieved by tracing signposts of ongoing star formation. One such signpost is molecular outflows, which are bright in molecular emission. We propose to utilize the protostellar outflow emission as a tracer of the SFR. In this work, we introduce a novel version of the galaxy-in-a-box model, which can be used to relate molecular emission from star formation in galaxies with the SFR. We measured the predicted para-H2O emission at 988 GHz and corresponding SFRs for galaxies with LFIR = 10810^8 - 101110^{11} L⊙_\odot in a distance-independent manner, and compared them with expectations from observations. We evaluated the derived results by varying the star formation efficiency, the free-fall time scaling factor, and the initial mass function. For the chosen H2O transition, relying on the current Galactic observations and star formation properties, we are underestimating the total galactic emission, while overestimating the SFRs, particularly for more starburst-like configurations. The current version of the galaxy-in-a-box model accounts for a limited number of processes and configurations, that is, it focuses on ongoing star formation in massive young clusters in a spiral galaxy. Therefore, the inferred results, which underestimate the emission and overestimate the SFR, are not surprising: known sources of emission are not included in the model. To improve the results, the next version of the model needs to include a more detailed treatment of the entire galactic ecosystem and other processes that would contribute to the emission.Comment: Accepted for publication in A&A. 11 pages, 6 figure

    Far infrared CO and H2_2O emission in intermediate-mass protostars

    Get PDF
    Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H2_2O in deeply-embedded intermediate-mass YSOs and compare with low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with bolometric luminosities of Lbol∌102−103L_\mathrm{bol}\sim10^2 - 10^3 L⊙L_\odot. The maps cover spatial scales of ∌104\sim 10^4 AU in several CO and H2_2O lines located in the ∌55−210\sim55-210 ÎŒ\mum range. Results: Rotational diagrams of CO show two temperature components at Trot∌320T_\mathrm{rot}\sim320 K and Trot∌700−800T_\mathrm{rot}\sim700-800 K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H2_2O show a single component at Trot∌130T_\mathrm{rot}\sim130 K, as seen in low-mass protostars, and about 100100 K lower than in high-mass protostars. Since the uncertainties in TrotT_\mathrm{rot} are of the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity, or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central 10310^{3} AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at 3⋅1033\cdot10^{3} AU scales, suggesting similar shock conditions in all those sources.Comment: Accepted to Astronomy & Astrophysics. 4 pages, 5 figures, 3 table

    APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: II. Distribution and origin of warm molecular gas

    Get PDF
    The origin and heating mechanisms of warm (50<T<200 K) molecular gas in low-mass young stellar objects (YSOs) are strongly debated. Both passive heating of the inner collapsing envelope by the protostellar luminosity as well as active heating by shocks and by UV associated with the outflows or accretion have been proposed. We aim to characterize the warm gas within protosteller objects, and disentangle contributions from the (inner) envelope, bipolar outflows and the quiescent cloud. High-J CO maps (12CO J=6--5 and 7--6) of the immediate surroundings (up to 10,000 AU) of eight low-mass YSOs are obtained with the CHAMP+ 650/850 GHz array receiver mounted on the APEX telescope. In addition, isotopologue observations of the 13CO J=6--5 transition and [C I] 3P_2-3P_1 line were taken. Strong quiescent narrow-line 12CO 6--5 and 7--6 emission is seen toward all protostars. In the case of HH~46 and Ced 110 IRS 4, the on-source emission originates in material heated by UV photons scattered in the outflow cavity and not just by passive heating in the inner envelope. Warm quiescent gas is also present along the outflows, heated by UV photons from shocks. Shock-heated warm gas is only detected for Class 0 flows and the more massive Class I sources such as HH~46. Outflow temperatures, estimated from the CO 6--5 and 3--2 line wings, are ~100 K, close to model predictions, with the exception of the L~1551 IRS 5 and IRAS 12496-7650, for which temperatures <50 K are found. APEX-CHAMP+ is uniquely suited to directly probe a protostar's feedback on its accreting envelope gas in terms of heating, photodissociation, and outflow dispersal by mapping 1'x1' regions in high-J CO and [C I] lines.Comment: 18 pages, accepted by A&A, A version with the figures in higher quality can be found on my website: http://www.cfa.harvard.edu/~tvankemp

    NH_3(1_0-0_0) in the pre-stellar core L1544

    Get PDF
    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH_3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH_3(1_0-0_0) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH_3 . The hyperfine structure of ortho-NH_3(1_0-0_0) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH_3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH_3(1,1). The chemical model overestimates the NH_3 abundance at radii between ~ 4000 and 15000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH_3 observations.Comment: accepted for publication in A&A Letter

    High-pressure, low-abundance water in bipolar outflows. Results from a Herschel-WISH survey

    Get PDF
    (Abridged) We present a survey of the water emission in a sample of more than 20 outflows from low mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. We have used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the "Water In Star-forming regions with Herschel" (WISH) key program, and have been complemented with CO and H2 data. We find that the emission from water has a different spatial and velocity distribution from that of the J=1-0 and 2-1 transitions of CO, but it has a similar spatial distribution to H2, and its intensity follows the H2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins responsible for the H2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates the emitting gas has a narrow range of excitations. A non-LTE radiative transfer analysis shows that while there is some ambiguity on the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4 10^{9} cm^{-3}K, which represents an increase of 10^4 with respect to the ambient value. The data also constrain within a factor of 2 the water column density. When this quantity is combined with H2 column densities, the typical water abundance is only 3 10^{-7}, with an uncertainty of a factor of 3. Our data challenge current C-shock models of water production due to a combination of wing-line profiles, high gas compressions, and low abundances.Comment: 21 pages, 13 figures. Accepted for publication in A&

    An extremely high velocity molecular jet surrounded by an ionized cavity in the protostellar source Serpens SMM1

    Full text link
    We report ALMA observations of a one-sided, high-velocity (∌\sim80 km s−1^{-1}) CO(J=2→1J = 2 \rightarrow 1) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-angle cavity; the walls of the cavity can be seen in both 4 cm free-free emission detected by the VLA and 1.3 mm thermal dust emission detected by ALMA. This is the first time that ionization of an outflow cavity has been directly detected via free-free emission in a very young, embedded Class 0 protostellar source that is still powering a molecular jet. The cavity walls are ionized either by UV photons escaping from the accreting protostellar source, or by the precessing molecular jet impacting the walls. These observations suggest that ionized outflow cavities may be common in Class 0 protostellar sources, shedding further light on the radiation, outflow, and jet environments in the youngest, most embedded forming stars.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    Inelastic Scattering in Metal-H2-Metal Junctions

    Get PDF
    We present first-principles calculations of the dI/dV characteristics of an H2 molecule sandwiched between Au and Pt electrodes in the presence of electron-phonon interactions. The conductance is found to decrease by a few percentage at threshold voltages corresponding to the excitation energy of longitudinal vibrations of the H2 molecule. In the case of Pt electrodes, the transverse vibrations can mediate transport through otherwise non-transmitting Pt dd-channels leading to an increase in the differential conductance even though the hydrogen junction is characterized predominately by a single almost fully open transport channel. In the case of Au, the transverse modes do not affect the dI/dV because the Au d-states are too far below the Fermi level. A simple explanation of the first-principles results is given using scattering theory. Finally, we compare and discuss our results in relation to experimental data.Comment: Accepted in Phys. Rev.
    • 

    corecore