59 research outputs found

    Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer-associated genes

    Get PDF
    Epigenetic silencing by promoter methylation of genes associated with cancer initiation and progression is a hallmark of tumour cells. As a consequence, testing for DNA methylation biomarkers in plasma or other body fluids shows great promise for detection of malignancies at early stages and/or for monitoring response to treatment. However, DNA from normal leukocytes may contribute to the DNA in plasma and will affect biomarker specificity if there is any methylation in the leukocytes. DNA from 48 samples of normal peripheral blood mononuclear cells was evaluated for the presence of methylation of a panel of DNA methylation biomarkers that have been implicated in cancer. SMART-MSP, a methylation specific PCR (MSP) methodology based on real time PCR amplification, high-resolution melting and strategic primer design, enabled quantitative detection of low levels of methylated DNA. Methylation was observed in all tested mononuclear cell DNA samples for the CDH1 and HIC1 promoters and in the majority of DNA samples for the TWIST1 and DAPK1 promoters. APC and RARB promoter methylation, at a lower average level, was also detected in a substantial proportion of the DNA samples. We found no BRCA1, CDKN2A, GSTP1 and RASSF1A promoter methylation in this sample set. Several individuals had higher levels of methylation at several loci suggestive of a methylator phenotype. In conclusion, methylation of many potential DNA methylation biomarkers can be detected in normal peripheral blood mononuclear cells, and is likely to affect their specificity for detecting low level disease. However, we found no evidence of promoter methylation for other genes indicating that panels of analytically sensitive and specific methylation biomarkers in body fluids can be obtained

    Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    Get PDF
    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients and to evaluate this as a prognostic marker. Furthermore, we wanted to follow possible changes in methylation levels during treatment. Seventy-four patients were enrolled in the study, of which 59 received rituximab and CHOP-like chemotherapy. Plasma samples were collected from all patients at the time of diagnosis and from 14 healthy individuals used as controls. In addition, plasma samples were collected during and after treatment for surviving patients. In total, 158 plasma samples were analyzed for DNA methylation in the promoter regions of DAPK (DAPK1), DBC1, MIR34A, and MIR34B/C using pyrosequencing. RESULTS: Aberrant methylation levels at the time of diagnosis were detected in 19, 16, 8, and 10 % of the DLBCL plasma samples for DAPK1, DBC1, MIR34A, and MIR34B/C, respectively. DAPK1 methylation levels were significantly correlated with DBC1 and MIR34B/C methylation levels (P < 0.001). For the entire cohort, 5-year overall survival (OS) rates were significantly lower in the groups carrying aberrant DAPK1 (P = 0.004) and DBC1 (P = 0.044) methylation, respectively. DAPK1 methylation status were significantly correlated with stage (P = 0.015), as all patients with aberrant DAPK1 methylation were stages III and IV. Multivariate analysis identified DAPK1 as an independent prognostic factor for OS with a hazard ratio of 8.9 (95 % CI 2.7–29.3, P < 0.0007). Patients with DAPK1 methylated cell-free circulating DNA at time of diagnosis, who became long-term survivors, lost the aberrant methylation after treatment initiation. Conversely, patients that maintained or regained aberrant DAPK1 methylation died soon thereafter. CONCLUSIONS: Aberrant promoter methylation of cell-free circulating DNA can be detected in plasma from DLBCL patients and hold promise as an easily accessible marker for evaluating response to treatment and for prognostication. In particular, aberrant DAPK1 methylation in plasma was an independent prognostic marker that may also be used to assess treatment response. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13148-016-0261-y) contains supplementary material, which is available to authorized users

    DNA methylation levels of the <i>ELMO </i>gene promoter CpG islands in human glioblastomas

    Get PDF
    Complete surgical resection of glioblastoma is difficult due to the invasive nature of this primary brain tumor, for which the molecular mechanisms behind remain poorly understood. The three human ELMO genes play key roles in cellular motility, and have been linked to metastasis and poor prognosis in other cancer types. The aim of this study was to investigate methylation levels of the ELMO genes and their correlation to clinical characteristics and outcome in patients diagnosed with glioblastoma. To measure DNA methylation levels we designed pyrosequencing assays targeting the promoter CpG island of each the ELMO genes. These were applied to diagnostic tumor specimens from a well-characterized cohort of 121 patients who received standard treatment consisting of surgery, radiation therapy, plus concomitant and adjuvant chemotherapy. The promoter methylation levels of ELMO1 and ELMO2 were generally low, whereas ELMO3 methylation levels were high, in the tumor biopsies. Thirteen, six, and 18 biopsies were defined as aberrantly methylated for ELMO1, ELMO2, and ELMO3, respectively. There were no significant associations between the methylation status of any of the ELMO gene promoter CpG islands and overall survival, progression-free survival, and clinical characteristics of the patients including intracranial tumor location. Therefore, the methylation status of the ELMO gene promoter CpG islands is unlikely to have prognostic value in glioblastoma

    Epigenetic changes in myelofibrosis:Distinct methylation changes in the myeloid compartments and in cases with <i>ASXL1</i> mutations

    Get PDF
    Abstract This is the first study to compare genome-wide DNA methylation profiles of sorted blood cells from myelofibrosis (MF) patients and healthy controls. We found that differentially methylated CpG sites located to genes involved in ‘cancer’ and ‘embryonic development’ in MF CD34+ cells, in ‘inflammatory disease’ in MF mononuclear cells, and in ‘immunological diseases’ in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation pattern using an unsupervised approach. However, in a supervised analysis of ASXL1 mutated versus wild-type cases, differentially methylated CpG sites were enriched in regions marked by histone H3K4me1, histone H3K27me3, and the bivalent histone mark H3K27me3 + H3K4me3 in human CD34+ cells. Hypermethylation of selected CpG sites was confirmed in a separate validation cohort of 30 MF patients by pyrosequencing. Altogether, we show that individual MF cell populations have distinct differentially methylated genes relative to their normal counterparts, which likely contribute to the phenotypic characteristics of MF. Furthermore, differentially methylated CpG sites in ASXL1 mutated MF cases are found in regulatory regions that could be associated with aberrant gene expression of ASXL1 target genes

    <資料>官房學と比較經營學

    Get PDF
    Spliceosome mutations are frequently observed in patients with myelodysplastic syndromes (MDS). However, it is largely unknown how these mutations contribute to the disease. MicroRNAs (miRNAs) are small noncoding RNAs, which have been implicated in most human cancers due to their role in post transcriptional gene regulation. The aim of this study was to analyze the impact of spliceosome mutations on the expression of miRNAs in a cohort of 34 MDS patients. In total, the expression of 76 miRNAs, including mirtrons and splice site overlapping miRNAs, was accurately quantified using reverse transcriptase quantitative PCR. The majority of the studied miRNAs have previously been implicated in MDS. Stably expressed miRNA genes for normalization of the data were identified using GeNorm and NormFinder algorithms. High-resolution melting assays covering all mutational hotspots within SF3B1, SRSF2, and U2AF1 (U2AF35) were developed, and all detected mutations were confirmed by Sanger sequencing. Overall, canonical miRNAs were downregulated in spliceosome mutated samples compared to wild-type (P = 0.002), and samples from spliceosome mutated patients clustered together in hierarchical cluster analyses. Among the most downregulated miRNAs were several tumor-suppressor miRNAs, including several let-7 family members, miR-423, and miR-103a. Finally, we observed that the predicted targets of the most downregulated miRNAs were involved in apoptosis, hematopoiesis, and acute myeloid leukemia among other cancer- and metabolic pathways. Our data indicate that spliceosome mutations may play an important role in MDS pathophysiology by affecting the expression of tumor suppressor miRNA genes involved in the development and progression of MDS

    circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer

    Get PDF
    Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.</p

    Long Non-Coding RNAs Guide the Fine-Tuning of Gene Regulation in B-Cell Development and Malignancy

    Get PDF
    With the introduction of next generation sequencing methods, such as RNA sequencing, it has become apparent that alterations in the non-coding regions of our genome are important in the development of cancer. Particularly interesting is the class of long non-coding RNAs (lncRNAs), including the recently described subclass of circular RNAs (circRNAs), which display tissue- and cell-type specific expression patterns and exert diverse regulatory functions in the cells. B-cells undergo complex and tightly regulated processes in order to develop from antigen na&iuml;ve cells residing in the bone marrow to the highly diverse and competent effector cells circulating in peripheral blood. These processes include V(D)J recombination, rapid proliferation, somatic hypermutation and clonal selection, posing a risk of malignant transformation at each step. The aim of this review is to provide insight into how lncRNAs including circRNAs, participate in normal B-cell differentiation, and how deregulation of these molecules is involved in the development of B-cell malignancies. We describe the prognostic value and functional significance of specific deregulated lncRNAs in diseases such as acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, Burkitt lymphoma and multiple myeloma, and we provide an overview of the current knowledge on the role of circRNAs in these diseases

    Predicting response to epigenetic therapy

    Full text link
    Drugs targeting the epigenome are new promising cancer treatment modalities; however, not all patients receive the same benefit from these drugs. In contrast to conventional chemotherapy, responses may take several months after the initiation of treatment to occur. Accordingly, identification of good pretreatment predictors of response is of great value. Many clinical parameters and molecular targets have been tested in preclinical and clinical studies with varying results, leaving room for optimization. Here we provide an overview of markers that may predict the efficacy of FDA- and EMA-approved epigenetic drugs
    • …
    corecore