11 research outputs found

    Protocol for the stimulating β3-Adrenergic receptors for peripheral artery disease (STAR-PAD) trial: a double-blinded, randomised, placebo-controlled study evaluating the effects of mirabegron on functional performance in patients with peripheral arterial disease

    Get PDF
    Introduction: There is currently only one approved medication effective at improving walking distance in people with intermittent claudication. Preclinical data suggest that the β3-adrenergic receptor agonist (mirabegron) could be repurposed to treat intermittent claudication associated with peripheral artery disease. The aim of the Stimulating β3-Adrenergic Receptors for Peripheral Artery Disease (STAR-PAD) trial is to test whether mirabegron improves walking distance in people with intermittent claudication. Methods and analysis: The STAR-PAD trial is a Phase II, multicentre, double-blind, randomised, placebo-controlled trial of mirabegron versus placebo on walking distance in patients with PAD. A total of 120 patients aged ≥40 years with stable PAD and intermittent claudication will be randomly assigned (1:1 ratio) to receive either mirabegron (50 mg orally once a day) or matched placebo, for 12 weeks. The primary endpoint is change in peak walking distance as assessed by a graded treadmill test. Secondary endpoints will include: (i) initial claudication distance; (ii) average daily step count and total step count and (iii) functional status and quality of life assessment. Mechanistic substudies will examine potential effects of mirabegron on vascular function, including brachial artery flow-mediate dilatation; MRI assessment of lower limb blood flow, tissue perfusion and arterial stiffness and numbers and angiogenesis potential of endothelial progenitor cells. Given that mirabegron is safe and clinically available for alternative purposes, a positive study is positioned to immediately impact patient care. Ethics and dissemination: The STAR-PAD trial is approved by the Northern Sydney Local Health District Human Research Ethics Committee (HREC/18/HAWKE/50). The study results will be published in peer-reviewed medical or scientific journals and presented at scientific meetings, regardless of the study outcomes

    Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure.

    Get PDF
    Heart failure (HF) is a shared manifestation of several cardiovascular pathologies, including hypertension and myocardial infarction, and a limited repertoire of treatment modalities entails that the associated morbidity and mortality remain high. Impaired nitric oxide (NO)/guanylyl cyclase (GC)/cyclic guanosine-3',5'-monophosphate (cGMP) signaling, underpinned, in part, by up-regulation of cyclic nucleotide-hydrolyzing phosphodiesterase (PDE) isozymes, contributes to the pathogenesis of HF, and interventions targeted to enhancing cGMP have proven effective in preclinical models and patients. Numerous PDE isozymes coordinate the regulation of cardiac cGMP in the context of HF; PDE2 expression and activity are up-regulated in experimental and human HF, but a well-defined role for this isoform in pathogenesis has yet to be established, certainly in terms of cGMP signaling. Herein, using a selective pharmacological inhibitor of PDE2, BAY 60-7550, and transgenic mice lacking either NO-sensitive GC-1α (GC-1α-/-) or natriuretic peptide-responsive GC-A (GC-A-/-), we demonstrate that the blockade of PDE2 promotes cGMP signaling to offset the pathogenesis of experimental HF (induced by pressure overload or sympathetic hyperactivation), reversing the development of left ventricular hypertrophy, compromised contractility, and cardiac fibrosis. Moreover, we show that this beneficial pharmacodynamic profile is maintained in GC-A-/- mice but is absent in animals null for GC-1α or treated with a NO synthase inhibitor, revealing that PDE2 inhibition preferentially enhances NO/GC/cGMP signaling in the setting of HF to exert wide-ranging protection to preserve cardiac structure and function. These data substantiate the targeting of PDE2 in HF as a tangible approach to maximize myocardial cGMP signaling and enhancing therapy.British Heart Foundation Grant PG/10/077/28554

    Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    Get PDF
    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility

    High-Resolution Transthoracic Echocardiography Accurately Detects Pulmonary Arterial Pressure and Decreased Right Ventricular Contractility in a Mouse Model of Pulmonary Fibrosis and Secondary Pulmonary Hypertension

    No full text
    : Background To date, assessment of right ventricular (RV) function in mice has relied extensively on invasive measurements. Echocardiographic advances have allowed adaptation of measures used in humans for serial, noninvasive RV functional assessment in mice. We evaluated the diagnostic performance of tricuspid annular plane systolic excursion (TAPSE), RV peak systolic myocardial velocity (s'), RV myocardial performance index (MPI), and RV fractional area change (FAC) in a mouse model of pulmonary hypertension. Methods and Results Echocardiography was performed on mice at baseline and 3 weeks after induction of pulmonary hypertension using inhaled bleomycin or saline, including adapted measures of TAPSE, s', MPI, and FAC. RV systolic pressure was measured by invasive catheterization, and RV contractility was measured as the peak slope of the RV systolic pressure recording (maximum change pressure/change time). Postmortem morphological assessment of RV hypertrophy was performed. RV systolic pressure was elevated and maximum change pressure/change time was reduced in bleomycin versus control (n=8; P=0.002). Compared with controls, bleomycin mice had reduced TAPSE (0.79±0.05 versus 1.06±0.04 mm; P=0.003), s' (21.3±1.2 versus 29.2±1.3 mm/s; P<0.001), and FAC (20.3±0.7% versus 31.0±1.3%; P<0.001), whereas MPI was increased (0.51±0.03 versus 0.37±0.01; P=0.006). All measures correlated with RV systolic pressure and maximum change pressure/change time. Intraobserver and interobserver variability were minimal. Receiver operating characteristic curves demonstrated that TAPSE (<0.84 mm), s'(<23.3 mm/s), MPI (0.42), and FAC (<23.3%) identified maximum change pressure/change time ≤2100 mm Hg/s with high accuracy. Conclusions TAPSE, s', MPI, and FAC are measurable consistently using high-resolution echocardiography in mice, and are sensitive and specific measures of pulmonary pressure and RV function. This validation opens the opportunity for serial noninvasive measures in mouse models of pulmonary hypertension, enhancing the statistical power of preclinical studies of novel therapeutics

    Maternal vitamin D deficiency leads to cardiac hypertrophy in rat offspring

    No full text
    The aim of this study was to determine the effect of vitamin D deficiency from conception until 4 weeks of age on the development of the heart in rat offspring. Sprague-Dawley (SD) rats were fed either a vitamin D deplete or vitamin D-replete diet for 6 weeks prior to pregnancy, during pregnancy and throughout lactation. Cardiomyocyte number was determined in fixed hearts of offspring at postnatal day 3 and 4 weeks of age using an optical disector/fractionator stereological technique. In other litters, cardiomyocytes were isolated from freshly excised hearts to determine the proportion of mononucleated and binucleated cardiomyocytes. Maternal vitamin D deficiency had no effect on cardiomyocyte number, cardiomyocyte area, or the proportion of mononucleated/binucleated cardiomyocytes in 3-day-old male and female offspring. Importantly, however, vitamin D deficiency led to an increase in left ventricle (LV) volume that was accompanied by an increase in cardiomyocyte number and size, and in the proportion of mononucleated cardiomyocytes at 4 weeks of age. Our findings suggest that exposure to vitamin D deficiency in utero and early life leads to delayed maturation and subsequent enhanced growth (proliferation and hypertrophy) of cardiomyocytes in the LV. This may lead to altered cardiac function later in life
    corecore