31 research outputs found

    Non-selective Primary Human Tumor Cell Line Generation from Surgical Resections to be Paired With Flash Frozen and Paraffin Embedded Tissue: Advancements in Democratizing Translational Research Materials to Rural Institutions

    Get PDF
    Translational cancer research relies on the availability of human patient tissue demonstrating the specific disease process under investigation. Biobanks of human tissue have historically been and remain to date the primary access point for cancer research samples. Biorepositories routinely supply researchers with varying sample types for use in biomedical studies; most commonly formalin-fixed and paraffin-embedded (FFPE) tissue, or fresh snap-frozen tissue. In conjunction with preserved tissue samples, viable tumor cell lines derived from patient tissue have emerged to be a new gold standard in cancer research particularly in drug discovery and functional prognostic assays. Tissue banks providing these samples are being termed “next-generation” and are adapting to directly assist researchers by performing high throughput technical studies such as routine histology and immunostaining of donor tissue. These high quality, next-generation biorepositories are a relatively scarce resource in the broader research community in the United States and have traditionally been associated with large centralized and very well established university medical centers. This article describes the next-generation resources now available at the Edwards Comprehensive Cancer Center with its association with the Marshall University Joan C. Edwards School of Medicine in Huntington, West Virginia. This manuscript details the procedures, protocols, and success rates of the Tissue Procurement Program (TPP) to generate a growing cohort of viable primary human tumor cell lines representing varying malignancies to be used in conjunction with matched formalin-fixed and paraffin-embedded (FFPE) and snap-frozen tissue samples for comprehensive translational research

    A Rare Case of Metastases from a High-grade Astrocytoma to the Pleura, Bones, and Liver within Six Months of Diagnosis

    Get PDF
    High grade astrocytomas such as anaplastic astrocytoma and glioblastoma multiforme are aggressive central nervous system malignancies with a poor prognosis. Due to shortened survival times, their devastating effects are usually localized intracranially and rarely metastasize outside of the central nervous system. When metastases occur, they usually present in patients with longer survival times and they typically coincide with a primary site recurrence. We present a rare case of metastases from a high-grade astrocytoma/glioblastoma to the pleura, bones and liver within six months of diagnosis, without primary site recurrence

    Expression of poly-ADP-ribose polymerase (PARP) in endometrial adenocarcinoma: Prognostic potential

    Get PDF
    © 2020 Background: In the United States endometrial carcinoma is the most common female gynecologic malignancy. An average of more than 60,000 new cases of endometrial carcinomas have been diagnosed yearly over the past 5 years, with a higher incidence occurring in the central Appalachian states of Ohio and West Virginia. In the U.S., the national average of newly diagnosed endometrial carcinomas is 26.8 in every 100,000 women, while in the states of Ohio and West Virginia the average is 30.5 and 31.1 in every 100,000 women, respectively. This notable increase in the incidence of endometrial carcinomas may be due a variety of elevated risk factors including but not limited to: tobacco use, obesity, and genetic predisposition of the predominant demographic. The American Cancer Society estimates that approximately 55,000 new cases of endometrial carcinoma will be diagnosed in 2020 yet, this disease is widely considered understudied and under-represented in mainstream cancer research circles. Methods: The aim of this study was to quantitate the co-expression of two DNA repair proteins poly-ADP-ribose polymerase 1 and 2 (Parp-1 and Parp-2) by enzyme- linked immuno-sorbent assay (ELISA) in 60 endometrioid endometrial tumor samples and compare their expression to matched non-malignant endometrial tissue from the same corresponding donors from central Appalachia. Results: We found that Parp-1 was significantly overexpressed in endometrial carcinoma relative to corresponding normal tissue. This overexpression implicates Parp inhibition therapy as a possible treatment for the disease. Our results also found a protective effect of native Parp-2 expression in non-malignant endometrial tissue with each 1 ng/mL increase in PARP-2 concentration in normal tissue was associated with a 10 % reduction in the hazard of tumor progression (HR = 0.90; p = 0.039) and a 21 % reduction in the hazard of death (HR = 0.79; p = 0.044). Conclusions: This study demonstrated the over-expression of the druggable target Parp-1 in endometrial adenocarcinoma and observed a strong negative correlation of native Parp-2 expression and disease progression via the quantification of the Parp proteins using enzyme- linked immuno-sorbent assay (ELISA) assays

    Minimally manipulative method for the expansion of human bone marrow mesenchymal stem cells to treat osseous defects

    Get PDF
    Copyright © 2019 Hamerly, Tweedell, Hritzo, Nyasembe, Tekwani, Nanayakkara, Walker and Dinglasan. Malaria is a major global health threat, with nearly half the world\u27s population at risk of infection. Given the recently described delayed clearance of parasites by artemisinincombined therapies, new antimalarials are needed to facilitate the global effort toward elimination and eradication. NPC1161 is an 8-aminoquinoline that is derived from primaquine with an improved therapeutic profile compared to the parent compound. The (R)-(-) enantiomer (NPC1161B) has a lower effective dose that results in decreased toxic side effects such as hemolysis compared to the (S)-(+)-enantiomer, making it a promising compound for consideration for clinical development. We explored the effect of NPC1161B on Plasmodium falciparum oocyst and sporozoite development to evaluate its potential transmission-blocking activity viz. its ability to cure mosquitoes of an ongoing infection. When mosquitoes were fed NPC1161B 4 days after P. falciparum infection, we observed that total oocyst numbers were not affected by NPC1161B treatment. However, the sporozoite production capacity of the oocysts was impaired, and salivary gland sporozoite infections were completely blocked, rendering the mosquitoes non-infectious. Importantly, NPC1161B did not require prior liver metabolism for its efficacy as is required in mammalian systems, suggesting that an alternative metabolite is produced in the mosquito that is active against the parasite. We performed liquid chromatography-mass spectrometry (LC-MS)/MS analysis of methanol extracts from the midguts of mosquitoes fed on an NPC1161B (434.15 m/z)-treated blood meal and identified a compound with a mass of 520.2 m/z, likely a conjugate of NPC1161B or an oxidized metabolite. These findings establish NPC1161B, and potentially its metabolites, as transmission-blocking candidates for the treatment of P. falciparum

    Clinical relevance of cancer stem cell chemotherapeutic assay for recurrent ovarian cancer

    Get PDF
    © 2020 Introduction: Disease recurrence and progression of ovarian cancer is common with the development of platinum-resistant or refractory disease. This is due in large part to the presence of chemo-resistant cancer stem cells (CSCs) that contribute to tumor propagation, maintenance, and treatment resistance. We developed a CSCs drug cytotoxicity assay (ChemoID) to identify the most effective chemotherapy treatment from a panel of FDA approved chemotherapies. Methods: Ascites and pleural fluid samples were collected under physician order from 45 consecutive patients affected by 3rd-5th relapsed ovarian cancer. Test results from the assay were used to treat patients with the highest cell kill drugs, taking into consideration their health status and using dose reductions, as needed. A retrospective chart review of CT and PET scans was used to determine patients\u27 outcomes for tumor response, time to recurrence, progression-free survival (PFS), and overall survival (OS). Results: We observed that recurrent ovarian cancer patients treated with high-cell kill chemotherapy agents guided by the CSCs drug response assay had an improvement in the median PFS corresponding to 5.4 months (3rd relapse), 3.6 months (4th relapse), and 3.9 months (5th relapse) when compared to historical data. Additionally, we observed that ovarian cancer patients identified as non-responders by the CSC drug response assay had 30 times the hazard of death compared to those women that were identified as responders with respective median survivals of 6 months vs. 13 months. We also found that ChemoID treated patients on average had an incremental cost-effectiveness ratio (ICER) between -18,421and18,421 and 7,241 per life-year saved (LYS). Conclusions: This study demonstrated improved PFS and OS for recurrent ovarian cancer patients treated with assay-guided chemotherapies while decreasing the cost of treatment

    Cancer Stem Cell Chemotherapeutics Assay for Prospective Treatment of Recurrent Glioblastoma and Progressive Anaplastic Glioma: A Single-Institution Case Series

    Get PDF
    © 2020 BACKGROUND: Chemotherapy-resistant cancer stem cells (CSC) may lead to tumor recurrence in glioblastoma (GBM). The poor prognosis of this disease emphasizes the critical need for developing a treatment stratification system to improve outcomes through personalized medicine. METHODS: We present a case series of 12 GBM and 2 progressive anaplastic glioma cases from a single Institution prospectively treated utilizing a CSC chemotherapeutics assay (ChemoID) guided report. All patients were eligible to receive a stereotactic biopsy and thus undergo ChemoID testing. We selected one of the most effective treatments based on the ChemoID assay report from a panel of FDA approved chemotherapy as monotherapy or their combinations for our patients. Patients were evaluated by MRI scans and response was assessed according to RANO 1.1 criteria. RESULTS: Of the 14 cases reviewed, the median age of our patient cohort was 49 years (21–63). We observed 6 complete responses (CR) 43%, 6 partial responses (PR) 43%, and 2 progressive diseases (PD) 14%. Patients treated with ChemoID assay-directed therapy, in combination with other modality of treatment (RT, LITT), had a longer median overall survival (OS) of 13.3 months (5.4-NA), compared to the historical median OS of 9.0 months (8.0–10.8 months) previously reported. Notably, patients with recurrent GBM or progressive high-grade glioma treated with assay-guided therapy had a 57% probability to survive at 12 months, compared to the 27% historical probability of survival observed in previous studies. CONCLUSIONS: The results presented here suggest that the ChemoID Assay has the potential to stratify individualized chemotherapy choices to improve recurrent and progressive high-grade glioma patient survival. Importance of the Study: Glioblastoma (GBM) and progressive anaplastic glioma are the most aggressive brain tumor in adults and their prognosis is very poor even if treated with the standard of care chemoradiation Stupp\u27s protocol. Recent knowledge pointed out that current treatments often fail to successfully target cancer stem cells (CSCs) that are responsible for therapy resistance and recurrence of these malignant tumors. ChemoID is the first and only CLIA (clinical laboratory improvements amendment) -certified and CAP (College of American Pathologists) -accredited chemotherapeutic assay currently available in oncology clinics that examines patient\u27s derived CSCs susceptibility to conventional FDA (Food and Drugs Administration) -approved drugs. In this study we observed that although the majority of our patients (71.5%) presented with unfavorable prognostic predictors (wild type IDH-1/2 and unmethylated MGMT promoter), patients treated with ChemoID assay-directed therapy had an overall response rate of 86% and increased median OS of 13.3 months compared to the historical median OS of 9.1 months (8.1–10.1 months) previously reported [1] suggesting that the ChemoID assay may be beneficial in personalizing treatment strategies

    FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC

    Get PDF
    CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet. We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response. Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy

    Cancer Stem Cell Assay-Guided Chemotherapy Improves Survival of Patients With Recurrent Glioblastoma in a Randomized Trial

    Get PDF
    Therapy-resistant cancer stem cells (CSCs) contribute to the poor clinical outcomes of patients with recurrent glioblastoma (rGBM) who fail standard of care (SOC) therapy. ChemoID is a clinically validated assay for identifying CSC-targeted cytotoxic therapies in solid tumors. In a randomized clinical trial (NCT03632135), the ChemoID assay, a personalized approach for selecting the most effective treatment from FDA-approved chemotherapies, improves the survival of patients with rGBM (2016 WHO classification) over physician-chosen chemotherapy. In the ChemoID assay-guided group, median survival is 12.5 months (95% confidence interval [CI], 10.2-14.7) compared with 9 months (95% CI, 4.2-13.8) in the physician-choice group (p = 0.010) as per interim efficacy analysis. The ChemoID assay-guided group has a significantly lower risk of death (hazard ratio [HR] = 0.44; 95% CI, 0.24-0.81; p = 0.008). Results of this study offer a promising way to provide more affordable treatment for patients with rGBM in lower socioeconomic groups in the US and around the world

    Minimally Manipulative Method for the Expansion of Human Bone Marrow Mesenchymal Stem Cells to Treat Osseous Defects

    Get PDF
    Lack of standardization of clinically compliant culture protocols of mesenchymal stem cells for re-implantation in humans have hindered clinical progress in the field of tissue regeneration to repair maxillofacial and orthopedic defects. The goal of this study was to establish a clinically relevant osteogenic protocol for collection and expansion of autologous stem cells to be used at Marshall University for re-implantation and repair of maxillofacial and orthopedic conditions. Human bone marrow (hBM) samples were collected from patients undergoing intramedullary nail fixation for closed femoral fractures. hBM mesenchymal cells were expanded by growing them first in Petri dishes for two weeks, followed by a week of culture using Perfecta 3D Hanging Drop Plates®. Various scaffold materials were tested and analyzed for cellular integration, vitality, and differentiation capacity of harvested hBM-MSCs including: 60/40 blend of hydroxyapatite biomatrix; Acellular bone composite discs; Allowash®, cancellous bone cubes; PLGA (poly lactic-co-glycolic acid); and Woven chitin derived fiber. We found that the 3D spheroid culture allowed production of hBM mesenchymal cells that retained osteoblast differentiation capacity over a monolayer culture of hBM-MSCs without the need to use chemical or hormonal modulation. We also observed that hydroxyapatite and Allowash cancellous bone scaffolds allowed better cell integration and viability properties as compared to other materials tested in this study. In conclusion, the multimodal culture methodology we developed creates actively differentiating stem-cell spheroids that can then be readily utilized in clinical practices to improve the regeneration of tissues of the head and the body
    corecore