2 research outputs found

    Tensile properties of 3D printed INCONEL 718 cellular specimens

    Get PDF
    The aim of the presented research by the authors was to compare the behaviour of four types of cellular structures under quasi-static tensile stress, while two samples were formed by mono-structures Gyroid 10 % and Diamond 10 %, and the other two types were bi-structures, which were created by combining two single structures (Gyroid 5 % + Gyroid 5 %) and (Gyroid 5 % + Diamond 5 %). The samples were made of Inconel 718 by Direct Metal Laser Sintering technology on an EOS EOSINT M270 machine, and they were heat treated according to AMS 5664 procedure. Tensile tests were performed on an Instron 8802 servo-hydraulic testing machine with a maximum capacity of 250 kN at ambient temperature. The results showed that the maximum load corresponded to the diamond (D) cellular structure (approximately 48 kN), while the minimum load was observed for the gyroid-gyroid (GG) structure (approximately 32 kN)

    3D Printing Optimization for Environmental Sustainability: Experimenting with Materials of Protective Face Shield Frames

    Full text link
    The motivation for research on 3D printing of protective face shields was the urgent societal demand for healthcare in the fight against the spread of COVID19 pandemic. Research is based on a literature review that shows that objects produced by additive technologies do not always have consistent quality suitable for the given purpose of use. Besides, they have different effects on the environment and leave different footprints. The overall goal of the research was to find out the most suitable thermoplastic material for printing shield frames in terms of mechanical properties, geometric accuracy, weight, printing time, filament price, and environmental sustainability. Fused deposition modeling (FDM) technology was used for 3D printing, and three different filaments were investigated: polylactic acid (PLA), polyethylene terephthalate (PETG), and polyhydroxyalkanoate (PHA). The weighted sum method for multi-objective optimization was used. Finally, PHA material was chosen, mainly due to its environmental sustainability, as it has the most negligible impact on the environment
    corecore