10 research outputs found

    Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARγ)

    Get PDF
    Background: Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin. Methodology/Principal Finding: We show that the minimal promoter of human resistin lies within ~80 bp sequence upstream of the transcriptional start site (-240) whereas binding sites for cRel, CCAAT enhancer binding protein α (C/EBP-α), activating transcription factor 2 (ATF-2) and activator protein 1 (AP-1) transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1) binding site (-276 to -295) is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPARγ) is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPARγ in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA) upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPARγ on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPARγ interaction. Chromatin immunoprecipitation (ChIP) assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPARγ, chromatin modifier histone deacetylase 1 (HDAC1) and the acetylated form of histone H3 but not cRel, C/EBP-α and phospho c-Jun during resistin gene transcription. Conclusion: Our findings suggest a complex interplay of Sp1 and PPARγ along with other transcription factors that drives the expression of resistin in human monocytic U937 cells

    Small Molecule Mediated Restoration of Mitochondrial Function Augments Anti-Mycobacterial Activity of Human Macrophages Subjected to Cholesterol Induced Asymptomatic Dyslipidemia

    No full text
    Mycobacterium tuberculosis (M.tb) infection manifests into tuberculosis (TB) in a small fraction of the infected population that comprises the TB susceptible group. Identifying the factors potentiating susceptibility to TB persistence is one of the prime agenda of TB control programs. Recently, WHO recognized diabetes as a risk factor for TB disease progression. The closely related pathological state of metabolic imbalance, dyslipidemia, is yet another emerging risk factor involving deregulation in host immune responses. While high cholesterol levels are clinically proven condition for perturbations in cardiac health, a significant fraction of population these days suffer from borderline risk cholesterol profiles. This apparently healthy population is susceptible to various health risks placing them in the “pre-disease” range. Our study focuses on determining the role of such asymptomatic dyslipidemia as a potential risk factor for susceptibility to TB persistence. Macrophages exposed to sub-pathological levels of cholesterol for chronic period, besides impaired release of TNF-α, could not clear intracellular pathogenic mycobacteria effectively as compared to the unexposed cells. These cells also allowed persistence of opportunistic mycobacterial infection by M. avium and M. bovis BCG, indicating highly compromised immune response. The cholesterol-treated macrophages developed a foamy phenotype with a significant increase in intracellular lipid-bodies prior to M.tb infection, potentially contributing to pre-disease state for tuberculosis infection. The foamy phenotype, known to support M.tb infection, increased several fold upon infection in these cells. Additionally, mitochondrial morphology and function were perturbed, more so during infection in cholesterol treated cells. Pharmacological supplementation with small molecule M1 that restored mitochondrial structural and functional integrity limited M.tb survival more effectively in cholesterol exposed macrophages. Mechanistically, M1 molecule promoted clearance of mycobacteria by reducing total cellular lipid content and restoring mitochondrial morphology and function to its steady state. We further supported our observations by infection assays in PBMC-derived macrophages from clinically healthy volunteers with borderline risk cholesterol profiles. With these observations, we propose that prolonged exposure to sub-pathological cholesterol can lead to asymptomatic susceptibility to M.tb persistence. Use of small molecules like M1 sets yet another strategy for host-directed therapy where re-functioning of mitochondria in cholesterol abused macrophages can improve M.tb clearance

    Mycobacterium tuberculosis PE25/PPE41 protein complex induces necrosis in macrophages: Role in virulence and disease reactivation?

    Get PDF
    Necrotic cell death during TB infection is an important prerequisite for bacterial dissemination and virulence. The underlying mechanisms and the bacterial factors involved therein are not well understood. The Mycobacterium tuberculosis (M. tuberculosis) co-operonic PE25/PPE41 protein complex, similar to ESAT-6/CFP-10, belonging to the PE/PPE and ESAT-6 families of genes has co-expanded and co-evolved in the genomes of pathogenic mycobacteria. We report a novel role of this highly immunogenic PE25/PPE41 protein complex in inducing necrosis, but not apoptosis, in macrophages. We propose that these protein complexes of M. tuberculosis, secreted by similar/unique transport system (Type VII), have an important role in M. tuberculosis virulence and disease reactivation

    Spodoptera frugiperdaFKBP-46 is a consensus p53 motif binding protein

    No full text
    p53 protein, the central molecule of the apoptosis pathway, is mutated in 50% of the human cancers. Of late, p53 homologues have been identified from different invertebrates including Drosophila melanogaster, Caenorhabditis elegans, Squid and Clams. We report the identification of a p53-like protein in Spodoptera frugiperda (Sf9) insect cells, which is activated during oxidative stress, caused by exposure to UV-B or H2O2, and binds to p53 consensus DNA binding motifs as well as other p53 cognate motifs. Sf9 p53 motif-binding protein is similar to murine and Drosophila p53 in terms of molecular size, which is around 50-60kDa, as evident from UV cross-linking, and displays DNA binding characteristics similar to both insect and vertebrate p53 as seen from electrophoretic mobility shift assays. The N-terminal sequencing of the purified Sf9 p53 motif-binding protein reveals extensive homology to the pro-apoptotic FK-506 binding protein (FKBP-46), earlier identified in Sf9 cells as a factor which interacts with murine casein kinase. FKBP, an evolutionarily conserved protein of mammalian origin functions as a pro-apoptotic factor. Identification of FKBP-46 as a novel p53 motif-binding protein in insect cells adds a new facet to our understanding of the mechanisms of apoptosis under oxidative stress in the absence of a typical p53 homologue

    Transcriptional regulation of Mycobacterium tuberculosis PE/PPE genes: a molecular switch to virulence?

    No full text
    The PE/PPE family of proteins, which constitute 10% of the coding capacity of the mycobacterial genome, comprises a unique set of genes which have no known homologs and have expanded throughout their evolution. Their association with virulence has been implicated by several researchers in tuberculosis, but the molecular basis of their virulence is yet to be completely explored. PE/PPE genes are mostly associated with the pathogenic strains of mycobacteria as many of them are known to be deleted in non-pathogenic ones. The non-essentiality of these genes for their in vitrogrowth but essentiality during infection highlights their active role in the host-pathogen interaction and consequently virulence. Even within the different strains of pathogenic mycobacteria and clinical isolates, many of the PE/PPE genes show sequence variation, pointing to their importance in providing antigenic variations, and have also been speculated to perform varied roles by differential expression during host-pathogen interaction. The transcriptional regulators of these genes could therefore act as a molecular switch for the pathogenesis of Mycobacterium tuberculosis. This review focuses on the expression and regulation of PE/PPE genes in the context of infection and pathogenicity and discusses the potential of these proteins as drug targets

    Encapsidation of Staufen-2 Enhances Infectivity of HIV-1

    No full text
    Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution

    Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection

    No full text
    Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell’s nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents

    Antioxidants prevent UV-induced apoptosis by inhibiting mitochondrial cytochrome C release and caspase activation in Spodoptera frugiperda (Sf9) cells

    No full text
    Oxidative stress has been shown to be associated with apoptosis (programmed cell death) in a number of cell systems. We earlier reported in vitro cultured Spodoptera frugiperda (Sf9) cells as a model system to study oxidative stress induced apoptosis (J Biosciences 24 (1999) 13) and the inhibition of UV-induced apoptosis by the baculovirus antiapoptotic p35 protein that acts as a sink to sequester reactive oxygen species (Proc Natl Acad Sci USA 96 (1999) 4838). We now show that UV-induced apoptosis in Sf9 cells, is preceded by the release of mitochondrial cytochrome c into the cytosol and consequent activation of Sf-caspase-1. The inhibitory effect of different antioxidants including scavengers of oxygen radicals such as butylated hydroxyanisole (BHA), alpha tocopherol acetate, benzoate and reduced-glutathione (GSH) on ultra violet B (UVB)-induced apoptosis in cultured Sf9 cells was assessed. Both, cytochrome c release as well as Sf-caspase-1 activation was inhibited by pre-treatment with antioxidants such as BHA and alpha tocopherol acetate, suggesting that these antioxidants inhibit apoptosis by acting quite upstream in the apoptosis cascade at the mitochondrial level, as well as downstream at the caspase level
    corecore