47 research outputs found
Recommended from our members
Optimal protection of stabilised dry live bacteria from bile toxicity in oral dosage forms by bile acid adsorbent resins
We previously found that dried live bacteria of a vaccine strain can be temporarily sensitive to bile acids and suggested that Bile Adsorbing Resins (BAR) can be used in oral vaccine tablets to protect dried bacteria from intestinal bile. Here, we report a quantitative analysis of the ability of BAR to exclude the dye bromophenol blue from penetrating into matrix tablets and also sections of hard capsule shells. Based on this quantitative analysis, we made a fully optimised formulation, comprising 25% w/w of cholestyramine in Vcaps™ HPMC capsules. This gave effectively 100% protection of viability from 4% bile, with 4200-fold more live bacteria recovered from this formulation compared to unprotected dry bacteria. From the image analysis, we found that the filler material or compaction force used had no measurable effect on dye exclusion but did affect the rate of tablet hydration. Increasing the mass fraction of BAR gave more exclusion of dye up to 25% w/w, after which a plateau was reached and no further dye exclusion was seen. More effective dye exclusion was seen with smaller particle sizes (i.e. cholestyramine) and when the BAR was thoroughly dried and disaggregated. Similar results were found when imaging dye penetration into capsule sections or tablets. The predictions of the dye penetration study were tested using capsules filled with dried attenuated Salmonella vaccine plus different BAR types, and the expected protection from bile was found, validating the imaging study. Surprisingly, depending on the capsule shell material, some protection was given by the capsule alone without adding BAR, with Vcaps™ HPMC capsules providing up to 174-fold protection against 1% bile; faster releasing Vcaps Plus™ HPMC capsules and Coni Snap™ gelatin capsules gave less protection
Characterising the disintegration properties of tablets in opaque media using texture analysis.
Tablet disintegration characterisation is used in pharmaceutical research, development, and quality control. Standard methods used to characterise tablet disintegration are often dependent on visual observation in measurement of disintegration times. This presents a challenge for disintegration studies of tablets in opaque, physiologically relevant media that could be useful for tablet formulation optimisation. This study has explored an application of texture analysis disintegration testing, a non-visual, quantitative means of determining tablet disintegration end point, by analysing the disintegration behaviour of two tablet formulations in opaque media. In this study, the disintegration behaviour of one tablet formulation manufactured in-house, and Sybedia Flashtab placebo tablets in water, bovine, and human milk were characterised. A novel method is presented to characterise the disintegration process and to quantify the disintegration end points of the tablets in various media using load data generated by a texture analyser probe. The disintegration times in the different media were found to be statistically different (P<0.0001) from one another for both tablet formulations using one-way ANOVA. Using the Tukey post-hoc test, the Sybedia Flashtab placebo tablets were found not to have statistically significant disintegration times from each other in human versus bovine milk (adjusted P value 0.1685).This work was made possible through the generous support of the Saving Lives at Birth partners: the United States Agency for International Development (USAID), the Government of Norway, the Bill & Melinda Gates Foundation, Grand Challenges Canada and the UK Department for International Development (DFID).This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0378517315002392#
Recommended from our members
Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome.
OBJECTIVES: Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS: To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS: PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naĂŻve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION: PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD
Recommended from our members
Protection of dried probiotic bacteria from bile using bile adsorbent resins
Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules
Recommended from our members
Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue.
Pediatric liver transplantation is often required as a consequence of biliary disorders because of the lack of alternative treatments for repairing or replacing damaged bile ducts. To address the lack of availability of pediatric livers suitable for transplantation, we developed a protocol for generating bioengineered biliary tissue suitable for biliary reconstruction. Our platform allows the derivation of cholangiocyte organoids (COs) expressing key biliary markers and retaining functions of primary extra- or intrahepatic duct cholangiocytes within 2 weeks of isolation. COs are subsequently seeded on polyglycolic acid (PGA) scaffolds or densified collagen constructs for 4 weeks to generate bioengineered tissue retaining biliary characteristics. Expertise in organoid culture and tissue engineering is desirable for optimal results. COs correspond to mature functional cholangiocytes, differentiating our method from alternative organoid systems currently available that propagate adult stem cells. Consequently, COs provide a unique platform for studies in biliary physiology and pathophysiology, and the resulting bioengineered tissue has broad applications for regenerative medicine and cholangiopathies
Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73.
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression
Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans
Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although non-mobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remains untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB and mobilized PB (mPB) to BM using single-cell RNA-seq and/or functional assays.
We uncover HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we find no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state, but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary stem cells/multipotent progenitors (HSC/MPPs) from spleen, PB and mPB share a common transcriptional signature and increased abundance of lineage-primed subsets compared to BM. Third, healthy PB HSPCs display a unique bias towards erythroid-megakaryocytic differentiation. At HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSC/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age, in essential thrombocythemia and in beta-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are non-proliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction
Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans.
Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and β-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction
Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.
During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.Work in the M.P.M. laboratory was supported by the Medical Research Council UK (MC_U105663142) and by a Wellcome Trust Investigator award (110159/Z/15/Z) to M.P.M. Work in the C.F. laboratory was supported by the Medical Research Council (MRC_MC_UU_12022/6). Work in the K.S.P. laboratory was supported by the Medical Research Council UK. Work in the RCH lab laboratory was supported by a Wellcome Trust Investigator award (110158/Z/15/Z) and a PhD studentship for .L.P from the University of Glasgow. A.V.G. was supported by a PhD studentship funded by the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)
Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases