11,351 research outputs found

    The Origin of X-shaped Radio Galaxies: Clues from the Z-symmetric Secondary Lobes

    Full text link
    Existing radio images of a few X-shaped radio galaxies reveal Z-symmetric morphologies in their weaker secondary lobes which cannot be naturally explained by either the galactic merger or radio-lobe backflow scenarios, the two dominant models for these X-shaped radio sources. We show that the merger picture can explain these morphologies provided one takes into account that, prior to the coalescence of their supermassive black holes, the smaller galaxy releases significant amounts of gas into the ISM of the dominant active galaxy. This rotating gas, whose angular momentum axis will typically not be aligned with the original jets, is likely to provide sufficient ram pressure at a distance ~10 kpc from the nucleus to bend the extant jets emerging from the central engine, thus producing a Z-symmetry in the pair of radio lobes. Once the two black holes have coalesced some 10^7 yr later, a rapid reorientation of the jets along a direction close to that of the orbital angular momentum of the swallowed galaxy relative to the primary galaxy would create the younger primary lobes of the X-shaped radio galaxy. This picture naturally explains why such sources typically have powers close to the FR I/II break. We suggest that purely Z-symmetric radio sources are often en route to coalescence and the concomitant emission of substantial gravitational radiation, while X-shaped ones have already merged and radiated.Comment: 12 pages, 1 compressed figure; accepted for publication in ApJ Letter

    Amplification of the androgen receptor may not explain the development of androgen-independent prostate cancer

    Get PDF
    Objective To examine the role of androgen receptor (AR) gene amplification and aneusomy of the X chromosome in the development of antiandrogen-resistant prostate cancer. Patients and methods Twenty patients with prostate cancer resistant to androgen-deprivation therapy were selected for study. The records of patients with tumours before and after antiandrogen therapy, and with a full clinical follow-up, were retrieved. AR gene amplification and X chromosome copy number were assessed by fluorescence in situ hybridization using a labelled probe at locus Xq11-13 for the AR gene and a labelled a-satellite probe for the X chromosome. At least 20 nuclei were scored over three tumour areas by two independent observers. Results Aneusomy of the X chromosome was reported respectively in seven (35%) and 11 (55%) tumours before and after hormone relapse, the AR gene copy number was increased in seven (35%) and 13 (65%), respectively, and AR gene amplification was detected in one (5%) and three (15%), respectively. Neither increased AR copy number nor AR amplification in primary tumours precluded a biological response to androgen-deprivation therapy. Conclusion The rate of AR gene amplification is too low to be solely responsible for the development of antiandrogen-resistant prostate cancer. Also, the presence of amplified AR and cells aneusomic for the X chromosome in primary tumours that respond to androgen-deprivation therapy suggests that an increase in AR gene copy number does not prevent a tumour from responding to this therapy. Therefore other mechanisms which could cause hormone-refractory prostate cancer must be investigated before it is understood why so many patients relapse with this disease

    Entropic uncertainty relations and entanglement

    Full text link
    We discuss the relationship between entropic uncertainty relations and entanglement. We present two methods for deriving separability criteria in terms of entropic uncertainty relations. Especially we show how any entropic uncertainty relation on one part of the system results in a separability condition on the composite system. We investigate the resulting criteria using the Tsallis entropy for two and three qubits.Comment: 8 pages, 3 figures, v2: small change
    corecore