4 research outputs found

    Changes in the Ecological Parameters of Mixed Forests of Sal (Shorea robusta Gaertn.) Are a Function of Distance from the Human Settlements

    No full text
    Forests in Nepal are extremely important for supporting the livelihood of millions of people who collect forest products for their subsistence use and partly for income generation. Such inherent dependence is expected to cause disturbance in the forest ecosystem. We investigated changes in the structural assemblages caused by the interaction between anthropogenic disturbances and forest management activities in the mixed forests of Sal (Shorea robusta Gaertn.) of Terai, Central Nepal. We evaluated three buffer zone community forests (BZCFs), namely, Radha Krishna, Musharni Mai, and Janajagaran of Parsa Wildlife Reserve (PWR); the forest inside PWR was taken as a control. A transect of 2 km length was laid in each forest, and six plots, each of 1 ha size, were established at a successive interval of 300 m along the edge to the interior of the forests to count and record the diameter at breast height (DBH) of the studied plants. We observed that the species diversity increased linearly (p < 0.05) towards the forest interior in the BZCFs. Species other than S. robusta had significantly higher (p < 0.05) dominance and Importance Value Indices in the interior sites. We did not observe such trends in the control forest. Multivariate analysis showed that the sites of BZCFs had higher structural dissimilarity, but the control forest sites were closer to each other in composition. The forest sites near the settlements had undergone biotic homogenization (S. robusta mixed forest changed to S. robusta forest) due to the interaction between anthropogenic disturbances and forest management activities. On the basis of vegetation density, the edges of BZCFs appeared to be protected, but on the basis of diversity failed to do so. Future management strategies should be directed towards enhancing the diversity, heterogeneity, and forest quality, especially near the forest edges

    Rapid behavioral responses of endangered tigers to major roads during COVID-19 lockdown

    No full text
    Roads pose a major, and growing, challenge for the conservation of endangered species. However, very little is known about how endangered species behaviorally respond to roads and what that means for road mitigation strategies. We used the nation-wide lockdown in Nepal during the COVID-19 pandemic as a natural experiment to investigate how dramatic reductions in traffic volume along the national highway affected movements of two GPS-collared tigers (Panthera tigris)—a globally endangered species. This work is the first systematic research on tigers in Nepal using radiotelemetry or GPS tracking data since the 1980s. We found that the highway more strongly constrained the space use and habitat selection of the male in Parsa National Park than the female in Bardia National Park. Over the entire study period, the female on average crossed 10 times more often per week than the male, and when he was near the highway, he was over 11 times more probable to not cross it than to cross during the day. However, we also found that the cessation of traffic during the pandemic lockdown relaxed tiger avoidance of roads and made the highway more permeable for both animals. They were 2–3 times more probable to cross the highway during the lockdown than before the lockdown. In the month following the lockdown, the space use area of the male tiger tripled in size (160–550 km2), whereas the female’s shrunk to half its previous size (33–15 km2). These divergent patterns likely reflect differences between the two parks in their highway traffic volumes and regulations as well as ecological conditions. Our results provide clear evidence that vehicle traffic on major roads impede tiger movements, but also that tigers can respond quickly to reductions in human pressures. We conclude by identifying various actions to mitigate road impacts on tigers and other endangered species

    Phylogeographical analysis shows the need to protect the wild yaks' last refuge in Nepal

    No full text
    Abstract The wild yak Bos mutus was believed to be regionally extinct in Nepal for decades until our team documented two individuals from Upper Humla, north‐western Nepal, in 2014. The International Union for Conservation of Nature (IUCN) seeks further evidence for the conclusive confirmation of that sighting. We conducted line transects and opportunistic sign surveys in the potential wild yak habitats of Humla, Dolpa, and Mustang districts between 2015 and 2017 and collected genetic samples (present and historic) of wild and domestic yaks Bos grunniens. We also sighted another wild yak in Upper Humla in 2015. Phylogenetic and haplotype network analyses based on mitochondrial D‐loop sequences (~450 bp) revealed that wild yaks in Humla share the haplotype with wild yaks from the north‐western region of the Qinghai‐Tibetan Plateau in China. While hybridization with domestic yaks is a major long‐term threat, illegal hunting for meat and trophy put the very small populations of wild yaks in Nepal at risk. Our study indicates that the unprotected habitat of Upper Humla is the last refuge for wild yaks in Nepal. We recommend wild yak conservation efforts in the country to focus on Upper Humla by (i) assigning a formal status of protected area to the region, (ii) raising awareness in the local communities for wild yak conservation, and (iii) providing support for adaptation of herding practice and pastureland use to ensure the viability of the population
    corecore