1 research outputs found

    Exploiting Safe Error based Leakage of RFID Authentication Protocol using Hardware Trojan Horse

    Get PDF
    Radio-Frequency Identification tags are used for several applications requiring authentication mechanisms, which if subverted can lead to dire consequences. Many of these devices are based on low-cost Integrated Circuits which are designed in off-shore fabrication facilities and thus raising concerns about their trust. Recently, a lightweight entity authentication protocol called LCMQ was proposed, which is based on Learning Parity with Noise, Circulant Matrix, and Multivariate Quadratic problems. This protocol was proven to be secure against Man-in-the-middle attack and cipher-text only attacks. In this paper, we show that in the standard setting, although the authentication uses two mm bit keys, K1\mathbf{K_1} and K2\mathbf{K_2}, knowledge of only K2\mathbf{K_2} is sufficient to forge the authentication. Based on this observation, we design a stealthy malicious modification to the circuitry based on the idea of Safe-errors to leak K2\mathbf{K_2} and thus can be used to forge the entire authentication mechanism. We develop a Field Programmable Gate Array prototype of the design which is extremely lightweight and can be implemented using four Lookup tables
    corecore