46 research outputs found

    Genome-wide identification of novel intergenic enhancer-like elements:Implications in the regulation of transcription in Plasmodium falciparum

    Get PDF
    Background: The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results: We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions: This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum.</p

    Genome-wide identification of novel intergenic enhancer-like elements:Implications in the regulation of transcription in Plasmodium falciparum

    Get PDF
    Background: The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results: We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions: This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum.</p

    Plasmodium falciparum epigenome:A distinct dynamic epigenetic regulation of gene expression

    Get PDF
    Histone modification profiles are predictive of gene expression and most of the knowledge gained is acquired through studies done in higher eukaryotes. However, genome-wide studies involving Plasmodium falciparum, the causative agent of malaria, have been rather few, at lower resolution (mostly using ChIP-on-chip), and covering limited number of histone modifications. In our recent study [1], we have performed extensive genome-wide analyses of multiple histone modifications including the active (H3K4me2, H3K4me3, H3K9ac, H3K14ac, H3K27ac and H4ac), inactive (H3K9me3 and H3K27me3), elongation (H3K79me3) and regulatory element (H3K4me1) in a stage-specific manner. Furthermore, we used a ligation-based method suitable for sequencing homopolymeric stretches as seen in P. falciparum for next-generation sequencing library amplification [2], enabling highly quantitative analysis of the extremely AT-rich P. falciparum genome. Our recently published study suggests that transcription regulation by virtue of poised chromatin and differential histone modifications is unique to P. falciparum [1]. Here we describe the experiments, quality controls and chromatin immunoprecipitation-sequencing data analysis of our associated study published in Epigenetics and Chromatin [1]. Stage-specific ChIP-sequencing data for histone modifications is submitted to Gene Expression Omnibus (GEO) database under the accession number GSE63369.</p

    Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells

    Get PDF
    The malaria parasite has a complex life cycle exhibiting phenotypic and morphogenic variations in two different hosts by existing in heterogeneous developmental states. To investigate this cellular heterogeneity of the parasite within the human host, we performed single-cell RNA sequencing of synchronized Plasmodium cells under control and temperature treatment conditions. Using the Malaria Cell Atlas (https://www.sanger.ac.uk/science/tools/mca) as a guide, we identified 9 subtypes of the parasite distributed across known intraerythrocytic stages. Interestingly, temperature treatment results in the upregulation of the AP2-G gene, the master regulator of sexual development in a small subpopulation of the parasites. Moreover, we identified a heterogeneous stress-responsive subpopulation (clusters 5, 6, and 7 [−10% of the total population]) that exhibits upregulation of stress response pathways under normal growth conditions. We also developed an online exploratory tool that will provide new insights into gene function under normal and temperature stress conditions. Thus, our study reveals important insights into cell-to-cell heterogeneity in the parasite population under temperature treatment that will be instrumental toward a mechanistic understanding of cellular adaptation and population dynamics in Plasmodium falciparum. IMPORTANCE The malaria parasite has a complex life cycle exhibiting phenotypic variations in two different hosts accompanied by cell-to-cell variability that is important for stress tolerance, immune evasion, and drug resistance. To investigate cellular heterogeneity determined by gene expression, we performed single-cell RNA sequencing (scRNA-seq) of about 12,000 synchronized Plasmodium cells under physiologically relevant normal (37°C) and temperature stress (40°C) conditions phenocopying the cyclic bouts of fever experienced during malarial infection. In this study, we found that parasites exhibit transcriptional heterogeneity in an otherwise morphologically synchronized culture. Also, a subset of parasites is continually committed to gametocytogenesis and stress-responsive pathways. These observations have important implications for understanding the mechanisms of drug resistance generation and vaccine development against the malaria parasite.</p

    Histone acetyltransferase PfGCN5 regulates stress responsive and artemisinin resistance related genes in Plasmodium falciparum

    Get PDF
    Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.</p

    Histone acetyltransferase PfGCN5 regulates stress responsive and artemisinin resistance related genes in Plasmodium falciparum

    Get PDF
    Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.</p

    Identification of Co-Existing Mutations and Gene Expression Trends Associated With K13-Mediated Artemisinin Resistance in Plasmodium falciparum

    Get PDF
    Plasmodium falciparum infects millions and kills thousands of people annually the world over. With the emergence of artemisinin and/or multidrug resistant strains of the pathogen, it has become even more challenging to control and eliminate the disease. Multiomics studies of the parasite have started to provide a glimpse into the confounding genetics and mechanisms of artemisinin resistance and identified mutations in Kelch13 (K13) as a molecular marker of resistance. Over the years, thousands of genomes and transcriptomes of artemisinin-resistant/sensitive isolates have been documented, supplementing the search for new genes/pathways to target artemisinin-resistant isolates. This meta-analysis seeks to recap the genetic landscape and the transcriptional deregulation that demarcate artemisinin resistance in the field. To explore the genetic territory of artemisinin resistance, we use genomic single-nucleotide polymorphism (SNP) datasets from 2,517 isolates from 15 countries from the MalariaGEN Network (The Pf3K project, pilot data release 4, 2015) to dissect the prevalence, geographical distribution, and co-existing patterns of genetic markers associated with/enabling artemisinin resistance. We have identified several mutations which co-exist with the established markers of artemisinin resistance. Interestingly, K13-resistant parasites harbor α-ß hydrolase and putative HECT domain–containing protein genes with the maximum number of SNPs. We have also explored the multiple, publicly available transcriptomic datasets to identify genes from key biological pathways whose consistent deregulation may be contributing to the biology of resistant parasites. Surprisingly, glycolytic and pentose phosphate pathways were consistently downregulated in artemisinin-resistant parasites. Thus, this meta-analysis highlights the genetic and transcriptomic features of resistant parasites to propel further exploratory studies in the community to tackle artemisinin resistance.</p

    Dynamic association of the H3K64 trimethylation mark with genes encoding exported proteins in Plasmodium falciparum

    Get PDF
    Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.</p

    Analyses of co-operative transitions in Plasmodium falciparum β-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding

    No full text
    The type II fatty acid synthase pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials because of its intrinsic differences from the type I pathway operating in humans. β -Ketoacyl-acyl carrier protein reductase is the only enzyme of this pathway that has no isoforms and thus selective inhibitors can be developed for this player of the pathway. We report here intensive studies on the direct interactions of Plasmodiumβ -ketoacyl-acyl carrier protein reductase with its cofactor, NADPH, acyl carrier protein, acetoacetyl-coenzyme A and other ligands in solution, by monitoring the intrinsic fluorescence (γ<SUB>max</SUB> 334 nm) of the protein as a result of its lone tryptophan, as well as the fluorescence of NADPH (γ<SUB>max</SUB> 450 nm) upon binding to the enzyme. Binding of the reduced cofactor makes the enzyme catalytically efficient, as it increases the binding affinity of the substrate, acetoacetyl-coenzyme A, by 16-fold. The binding affinity of acyl carrier protein to the enzyme also increases by approximately threefold upon NADPH binding. Plasmodiumβ -ketoacyl-acyl carrier protein reductase exhibits negative, homotropic co-operative binding for NADPH, which is enhanced in the presence of acyl carrier protein. Acyl carrier protein increases the accessibility of NADPH to β-ketoacyl-acyl carrier protein reductase, as evident from the increase in the accessibility of the tryptophan of β -ketoacyl-acyl carrier protein reductase to acrylamide, from 81 to 98%. In the presence of NADP<SUP>+</SUP>, the reaction proceeds in the reverse direction (K<SUB>a</SUB> = 23.17 μ m<SUP>-1</SUP>). These findings provide impetus for exploring the influence of ligands on the structure-activity relationship of Plasmodiumβ-ketoacyl-acyl carrier protein reductase
    corecore