4 research outputs found

    Forest structural complexity tool—an open source, fully-automated tool for measuring forest point clouds

    Get PDF
    Forest mensuration remains critical in managing our forests sustainably, however, capturing such measurements remains costly, time-consuming and provides minimal amounts of information such as diameter at breast height (DBH), location, and height. Plot scale remote sensing techniques show great promise in extracting detailed forest measurements rapidly and cheaply, however, they have been held back from large-scale implementation due to the complex and time-consuming workflows required to utilize them. This work is focused on describing and evaluating an approach to create a robust, sensor-agnostic and fully automated forest point cloud measurement tool called the Forest Structural Complexity Tool (FSCT). The performance of FSCT is evaluated using 49 forest plots of terrestrial laser scanned (TLS) point clouds and 7022 destructively sampled manual diameter measurements of the stems. FSCT was able to match 5141 of the reference diameter measurements fully automatically with mean, median and root mean squared errors (RMSE) of 0.032 m, 0.02 m, and 0.103 m respectively. A video demonstration is also provided to qualitatively demonstrate the diversity of point cloud datasets that the tool is capable of measuring. FSCT is provided as open source, with the goal of enabling plot scale remote sensing techniques to replace most structural forest mensuration in research and industry. Future work on this project will seek to make incremental improvements to this methodology to further improve the reliability and accuracy of this tool in most high-resolution forest point clouds

    TLS2trees: A scalable tree segmentation pipeline for TLS data

    Get PDF
    1. Above-ground biomass (AGB) is an important metric used to quantify the mass of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated at the plot scale (typically 1 ha) using inventory measurements and allometry. In recent years, terrestrial laser scanning (TLS) has appeared as a disruptive technology that can generate a more accurate assessment of tree and plot scale AGB; however, operationalising TLS methods has had to overcome a number of challenges. One such challenge is the segmentation of individual trees from plot level point clouds that are required to estimate woody volume, this is often done manually (e.g. with interactive point cloud editing software) and can be very time consuming. / 2. Here we present TLS2trees, an automated processing pipeline and set of Python command line tools that aims to redress this processing bottleneck. TLS2trees consists of existing and new methods and is specifically designed to be horizontally scalable. The processing pipeline is demonstrated on 7.5 ha of TLS data captured across 10 plots of seven forest types; from open savanna to dense tropical rainforest. / 3. A total of 10,557 trees are segmented with TLS2trees: these are compared to 1281 manually segmented trees. Results indicate that TLS2trees performs well, particularly for larger trees (i.e. the cohort of largest trees that comprise 50% of total plot volume), where plot-wise tree volume bias is ±0.4 m3 and %RMSE is 60%. Segmentation performance decreases for smaller trees, for example where DBH ≤10 cm; a number of reasons are suggested including performance of semantic segmentation step. / 4. The volume and scale of TLS data captured in forest plots is increasing. It is suggested that to fully utilise this data for activities such as monitoring, reporting and verification or as reference data for satellite missions an automated processing pipeline, such as TLS2trees, is required. To facilitate improvements to TLS2trees, as well as modification for other laser scanning modes (e.g. mobile and UAV laser scanning), TLS2trees is a free and open-source software

    Design and Testing of a Novel Unoccupied Aircraft System for the Collection of Forest Canopy Samples

    No full text
    Unoccupied Aircraft Systems (UAS) are beginning to replace conventional forest plot mensuration through their use as low-cost and powerful remote sensing tools for monitoring growth, estimating biomass, evaluating carbon stocks and detecting weeds; however, physical samples remain mostly collected through time-consuming, expensive and potentially dangerous conventional techniques. Such conventional techniques include the use of arborists to climb the trees to retrieve samples, shooting branches with firearms from the ground, canopy cranes or the use of pole-mounted saws to access lower branches. UAS hold much potential to improve the safety, efficiency, and reduce the cost of acquiring canopy samples. In this work, we describe and demonstrate four iterations of 3D printed canopy sampling UAS. This work includes detailed explanations of designs and how each iteration informed the design decisions in the subsequent iteration. The fourth iteration of the aircraft was tested for the collection of 30 canopy samples from three tree species: eucalyptus pulchella, eucalyptus globulus and acacia dealbata trees. The collection times ranged from 1 min and 23 s, up to 3 min and 41 s for more distant and challenging to capture samples. A vision for the next iteration of this design is also provided. Future work may explore the integration of advanced remote sensing techniques with UAS-based canopy sampling to progress towards a fully-automated and holistic forest information capture system
    corecore