111 research outputs found

    Distributed boundary tracking using alpha and Delaunay-Cech shapes

    Get PDF
    For a given point set SS in a plane, we develop a distributed algorithm to compute the α−\alpha-shape of SS. α−\alpha-shapes are well known geometric objects which generalize the idea of a convex hull, and provide a good definition for the shape of SS. We assume that the distances between pairs of points which are closer than a certain distance r>0r>0 are provided, and we show constructively that this information is sufficient to compute the alpha shapes for a range of parameters, where the range depends on rr. Such distributed algorithms are very useful in domains such as sensor networks, where each point represents a sensing node, the location of which is not necessarily known. We also introduce a new geometric object called the Delaunay-\v{C}ech shape, which is geometrically more appropriate than an α−\alpha-shape for some cases, and show that it is topologically equivalent to α−\alpha-shapes

    Persistent Homology of Delay Embeddings

    Full text link
    The objective of this study is to detect and quantify the periodic behavior of the signals using topological methods. We propose to use delay-coordinate embeddings as a tool to measure the periodicity of signals. Moreover, we use persistent homology for analyzing the structure of point clouds of delay-coordinate embeddings. A method for finding the appropriate value of delay is proposed based on the autocorrelation function of the signals. We apply this topological approach to wheeze signals by introducing a model based on their harmonic characteristics. Wheeze detection is performed using the first Betti numbers of a few number of landmarks chosen from embeddings of the signals.Comment: 16 pages, 8 figure

    Demystifying Deep Learning: A Geometric Approach to Iterative Projections

    Full text link
    Parametric approaches to Learning, such as deep learning (DL), are highly popular in nonlinear regression, in spite of their extremely difficult training with their increasing complexity (e.g. number of layers in DL). In this paper, we present an alternative semi-parametric framework which foregoes the ordinarily required feedback, by introducing the novel idea of geometric regularization. We show that certain deep learning techniques such as residual network (ResNet) architecture are closely related to our approach. Hence, our technique can be used to analyze these types of deep learning. Moreover, we present preliminary results which confirm that our approach can be easily trained to obtain complex structures.Comment: To be appeared in the ICASSP 2018 proceeding

    Deep Dictionary Learning: A PARametric NETwork Approach

    Full text link
    Deep dictionary learning seeks multiple dictionaries at different image scales to capture complementary coherent characteristics. We propose a method for learning a hierarchy of synthesis dictionaries with an image classification goal. The dictionaries and classification parameters are trained by a classification objective, and the sparse features are extracted by reducing a reconstruction loss in each layer. The reconstruction objectives in some sense regularize the classification problem and inject source signal information in the extracted features. The performance of the proposed hierarchical method increases by adding more layers, which consequently makes this model easier to tune and adapt. The proposed algorithm furthermore, shows remarkably lower fooling rate in presence of adversarial perturbation. The validation of the proposed approach is based on its classification performance using four benchmark datasets and is compared to a CNN of similar size

    Analysis Dictionary Learning: An Efficient and Discriminative Solution

    Full text link
    Discriminative Dictionary Learning (DL) methods have been widely advocated for image classification problems. To further sharpen their discriminative capabilities, most state-of-the-art DL methods have additional constraints included in the learning stages. These various constraints, however, lead to additional computational complexity. We hence propose an efficient Discriminative Convolutional Analysis Dictionary Learning (DCADL) method, as a lower cost Discriminative DL framework, to both characterize the image structures and refine the interclass structure representations. The proposed DCADL jointly learns a convolutional analysis dictionary and a universal classifier, while greatly reducing the time complexity in both training and testing phases, and achieving a competitive accuracy, thus demonstrating great performance in many experiments with standard databases.Comment: ICASSP 201
    • …
    corecore