6 research outputs found
Evaluation of IScore validity in a Greek cohort of patients with type 2 diabetes
BACKGROUND: Diabetes constitutes a risk factor for stroke that also aggravates stroke prognosis. Several prognostic models have been developed for the evaluation of neurologic status, severity, short-term functional outcome and mortality of stroke patients. IScore is a novel tool recently developed in order to predict mortality rates within 30 days and 1 year after ischemic stroke and diabetes is not included in the scoring scale of IScore. The aim of the present study was to evaluate and compare IScore validity in ischemic stroke patients with and without diabetes. METHODS: This prospective study included 312 consecutive Caucasian patients with type 2 diabetes and 222 Caucasian patients without diabetes admitted for ischemic stroke in a tertiary Greek hospital. Thirty-day and 1-year IScores were individually calculated for each patient and actual mortality was monitored at the same time intervals. IScore’s predictive ability and calibration was evaluated and compared for ischemic stroke patients with and without diabetes. The performance of IScore for predicting 30 and 1-year mortality between patients with and without diabetes was assessed by determining the calibration and discrimination of the score. The area under the receiver operating characteristic curve was used to evaluate the discriminative ability of IScore for patients with and without diabetes, whereas the calibration of IScore was assessed by the Hosmer–Lemeshow goodness-of fit statistic. RESULTS: Baseline population characteristics and mortality rates did not differ significantly for both cohorts. IScore values were significantly higher for patients with diabetes at 30 days and 1 year after ischemic stroke and patients with diabetes presented more frequently with lacunar strokes. Based on ROC curves analysis IScore’s predictive ability for 30 day mortality was excellent, without statistically significant difference, for both cohorts. Predictive ability for 1 year mortality was also excellent for both groups with significantly better ability for patients with diabetes especially at high score values. Calibration of the model was good for both groups of patients. CONCLUSIONS: IScore accurately predicts mortality in acute ischemic stroke Caucasian patients with and without diabetes with higher efficacy in predicting 1 year mortality in patients with diabetes especially with high scores
Therapeutic Approaches in Locked-in Syndrome
Locked-in syndrome (LIS) is a neuropsychological condition, in which patients present with quadriplegia, lower cranial nerve paralysis, and mutism. Diagnosis of LIS is difficult because of the similarities with other related syndromes, but it is of crucial importance to establish precise and early diagnosis in order to make the appropriate decisions according to the intervention and treatment planning. Access to a multidisciplinary, specialized team provides opportunity for continued improvement. Individualized treatment improves long-term management. Assistive technology and advanced communication aids may help people with disabilities to regain more independence and take part in everyday life. Technological achievements, such as brain-computer interfaces (BCIs) may potentially be of significant practical value to patients with LIS. Advancements in medical care, rehabilitation, and communication technology have focused on leading LIS patients to live meaningful lives in the society with the involvement of their families
Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface
Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy