7 research outputs found

    Longitudinal fibre-specific white matter damage predicts cognitive decline in multiple sclerosis

    Get PDF
    During the course of multiple sclerosis, many patients experience cognitive deficits which are not simply driven by lesion number or location. By considering the full complexity of white matter structure at macro- and microstructural levels, our understanding of cognitive impairment in multiple sclerosis may increase substantially. Accordingly, this study aimed to investigate specific patterns of white matter degeneration, the evolution over time, the manifestation across different stages of the disease and their role in cognitive impairment using a novel fixel-based approach. Neuropsychological test scores and MRI scans including 30-direction diffusion-weighted images were collected from 327 multiple sclerosis patients (mean age = 48.34 years, 221 female) and 95 healthy controls (mean age = 45.70 years, 55 female). Of those, 233 patients and 61 healthy controls had similar follow-up assessments 5 years after. Patients scoring 1.5 or 2 standard deviations below healthy controls on at least two out of seven cognitive domains (from the Brief Repeatable Battery of Neuropsychological Tests, BRB-N) were classified as mildly cognitively impaired or cognitively impaired, respectively, or otherwise cognitively preserved. Fixel-based analysis of diffusion data was used to calculate fibre-specific measures (fibre density, reflecting microstructural diffuse axonal damage; fibre cross-section, reflecting macrostructural tract atrophy) within atlas-based white matter tracts at each visit. At baseline, all fixel-based measures were significantly worse in multiple sclerosis compared with healthy controls (P < 0.05). For both fibre density and fibre cross-section, a similar pattern was observed, with secondary progressive multiple sclerosis patients having the most severe damage, followed by primary progressive and relapsing-remitting multiple sclerosis. Similarly, damage was least severe in cognitively preserved (n = 177), more severe in mildly cognitively impaired (n = 63) and worst in cognitively impaired (n = 87; P < 0.05). Microstructural damage was most pronounced in the cingulum, while macrostructural alterations were most pronounced in the corticospinal tract, cingulum and superior longitudinal fasciculus. Over time, white matter alterations worsened most severely in progressive multiple sclerosis (P < 0.05), with white matter atrophy progression mainly seen in the corticospinal tract and microstructural axonal damage worsening in cingulum and superior longitudinal fasciculus. Cognitive decline at follow-up could be predicted by baseline fixel-based measures (R2 = 0.45, P < 0.001). Fixel-based approaches are sensitive to white matter degeneration patterns in multiple sclerosis and can have strong predictive value for cognitive impairment. Longitudinal deterioration was most marked in progressive multiple sclerosis, indicating that degeneration in white matter remains important to characterize further in this phenotype

    Axonal and myelin changes and their inter-relationship in the optic radiations in people with multiple sclerosis

    No full text
    Background: The imaging g-ratio, estimated from axonal volume fraction (AVF) and myelin volume fraction (MVF), is a novel biomarker of microstructural tissue integrity in multiple sclerosis (MS). Objective: To assess axonal and myelin changes and their inter-relationship as measured by g-ratio in the optic radiations (OR) in people with MS (pwMS) with and without previous optic neuritis (ON) compared to healthy controls (HC). Methods: Thirty pwMS and 17 HCs were scanned on a 3Tesla Connectom scanner. AVF and MVF, derived from a multi-shell diffusion protocol and macromolecular tissue volume, respectively, were measured in normal-appearing white matter (NAWM) and lesions within the OR and used to calculate imaging g-ratio. Results: OR AVF and MVF were decreased in pwMS compared to HC, and in OR lesions compared to NAWM, whereas the g-ratio was not different. Compared to pwMS with previous ON, AVF and g-ratio tended to be higher in pwMS without prior ON. AVF and MVF, particularly in NAWM, were positively correlated with retinal thickness, which was more pronounced in pwMS with prior ON. Conclusion: Axonal measures reflect microstructural tissue damage in the OR, particularly in the setting of remote ON, and correlate with established metrics of visual health in MS

    Cardiac inflammation and microvascular procoagulant changes are decreased in second wave compared to first wave deceased COVID-19 patients.

    Get PDF
    BACKGROUND Compelling evidence has shown cardiac involvement in COVID-19 patients. However, the overall majority of these studies use data obtained during the first wave of the pandemic, while recently differences have been reported in disease course and mortality between first- and second wave COVID-19 patients. The aim of this study was to analyze and compare cardiac pathology between first- and second wave COVID-19 patients. METHODS Autopsied hearts from first- (n = 15) and second wave (n = 10) COVID-19 patients and from 18 non-COVID-19 control patients were (immuno)histochemically analyzed. CD45+ leukocyte, CD68+ macrophage and CD3+ T lymphocyte infiltration, cardiomyocyte necrosis and microvascular thrombosis were quantified. In addition, the procoagulant factors Tissue Factor (TF), Factor VII (FVII), Factor XII (FXII), the anticoagulant protein Dipeptidyl Peptidase 4 (DPP4) and the advanced glycation end-product N(ε)-Carboxymethyllysine (CML), as markers of microvascular thrombogenicity and dysfunction, were quantified. RESULTS Cardiac inflammation was significantly decreased in second wave compared to first wave COVID-19 patients, predominantly related to a decrease in infiltrated lymphocytes and the occurrence of lymphocytic myocarditis. This was accompanied by significant decreases in cardiomyocyte injury and microvascular thrombosis. Moreover, microvascular deposits of FVII and CML were significantly lower in second wave compared to first wave COVID-19 patients. CONCLUSIONS These results show that in our cohort of fatal COVID-19 cases cardiac inflammation, cardiomyocyte injury and microvascular thrombogenicity were markedly decreased in second wave compared to first wave patients. This may reflect advances in COVID-19 treatment related to an increased use of steroids in the second COVID-19 wave

    Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma

    Get PDF
    BACKGROUND: Cognitive impairment is a common and debilitating symptom in patients with diffuse glioma, and is the result of multiple factors. We hypothesized that molecular tumor characteristics influence neurocognitive functioning (NCF), and aimed to identify tumor-related markers of NCF in diffuse glioma patients. METHODS: We examined the relation between cognitive performance (executive function, memory, and psychomotor speed) and intratumoral expression levels of molecular markers in treatment-naive patients with diffuse glioma. We performed a single-center study in a consecutive cohort, through a two-step design: (1) hypothesis-free differential expression and gene set enrichment analysis to identify candidate oncogenetic markers for cognitive impairment. Nineteen molecular markers of interest were derived from this set of genes, as well as from prior knowledge; (2) correlation of cognitive performance to intratumoral expression levels of these nineteen molecular markers, measured with immunohistochemistry. RESULTS: From 708 included patients with immunohistochemical data, we performed an in-depth analysis of neuropsychological data in 197, and differential expression analysis in 65 patients. After correcting for tumor volume and location, we found significant associations between expression levels of CD3 and IDH-1 and psychomotor speed; between IDH-1, ATRX, NLGN3, BDNF, CK2Beta, EAAT1, GAT-3, SRF, and memory performance; and between IDH-1, P-STAT5b, NLGN3, CK2Beta, and executive functioning. P-STAT5b, CD163, CD3, and Semaphorin-3A were independently associated after further correction for histopathological grade. CONCLUSION: Molecular characteristics of glioma can be independent determinants of patients' cognitive functioning. This suggests that besides tumor volume, location, and histological grade, variations in glioma biology influence cognitive performance through mechanisms that include perturbation of neuronal communication. These results pave the way towards targeted cognition improving therapies in neuro-oncology

    Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients

    No full text
    Background: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. Methods: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. Results: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. Conclusions: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart

    Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients

    No full text
    Background: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. Methods: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. Results: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. Conclusions: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart

    Cardiac inflammation and microvascular procoagulant changes are decreased in second wave compared to first wave deceased COVID-19 patients

    No full text
    Background: Compelling evidence has shown cardiac involvement in COVID-19 patients. However, the overall majority of these studies use data obtained during the first wave of the pandemic, while recently differences have been reported in disease course and mortality between first- and second wave COVID-19 patients. The aim of this study was to analyze and compare cardiac pathology between first- and second wave COVID-19 patients. Methods: Autopsied hearts from first- (n = 15) and second wave (n = 10) COVID-19 patients and from 18 non-COVID-19 control patients were (immuno)histochemically analyzed. CD45+ leukocyte, CD68+ macrophage and CD3+ T lymphocyte infiltration, cardiomyocyte necrosis and microvascular thrombosis were quantified. In addition, the procoagulant factors Tissue Factor (TF), Factor VII (FVII), Factor XII (FXII), the anticoagulant protein Dipeptidyl Peptidase 4 (DPP4) and the advanced glycation end-product N(ε)-Carboxymethyllysine (CML), as markers of microvascular thrombogenicity and dysfunction, were quantified. Results: Cardiac inflammation was significantly decreased in second wave compared to first wave COVID-19 patients, predominantly related to a decrease in infiltrated lymphocytes and the occurrence of lymphocytic myocarditis. This was accompanied by significant decreases in cardiomyocyte injury and microvascular thrombosis. Moreover, microvascular deposits of FVII and CML were significantly lower in second wave compared to first wave COVID-19 patients. Conclusions: These results show that in our cohort of fatal COVID-19 cases cardiac inflammation, cardiomyocyte injury and microvascular thrombogenicity were markedly decreased in second wave compared to first wave patients. This may reflect advances in COVID-19 treatment related to an increased use of steroids in the second COVID-19 wave
    corecore