17 research outputs found
Transcutaneous Electrical Spinal Cord Neuromodulator (TESCoN) Improves Symptoms of Overactive Bladder
Non-Surgical modality to reduce incidence of urinary incontinence and improve neurogenic bladder symptom scores (NBSS) in individuals with neurogenic bladder due to spinal cord injury or stroke
The Effect of Non-invasive Spinal Cord Stimulation on Anorectal Function in Individuals With Spinal Cord Injury : A Case Series
Spinal cord injury (SCI) is a devastating condition that impacts multiple organ systems. Neurogenic bowel dysfunction (NBD) frequently occurs after a SCI leading to reduced sensation of bowel fullness and bowel movement often leading to constipation or fecal incontinence. Spinal Neuromodulation has been proven to be a successful modality to improve sensorimotor and autonomic function in patients with spinal cord injuries. The pilot data presented here represents the first demonstration of using spinal neuromodulation to activate the anorectal regions of patients with spinal cord injuries and the acute and chronic effects of stimulation. We observed that spinal stimulation induces contractions as well as changes in sensation and pressure profiles along the length of the anorectal region. In addition, we present a case report of a patient with a SCI and the beneficial effect of spinal neuromodulation on the patient's bowel program
Noninvasive spinal neuromodulation mitigates symptoms of idiopathic overactive bladder
Altres ajuts: Academy of Finland 129164Overactive bladder (OAB) affects 12 to 30% of the world's population. The accompanying urinary urgency, frequency and incontinence can have a profound effect on quality of life, leading to depression, social isolation, avoidance of sexual activity and loss of productivity. Conservative measures such as lifestyle modification and pelvic floor physical therapy are the first line of treatment for overactive bladder. Patients who fail these may go on to take medications, undergo neuromodulation or receive injection of botulinum toxin into the bladder wall. While effective, medications have side effects and suffer from poor adherence. Neuromodulation and botulinum toxin injection are also effective but are invasive and not acceptable to some patients. We have developed a novel transcutaneous spinal cord neuromodulator (SCONEâ„¢,) that delivers multifrequency electrical stimulation to the spinal cord without the need for insertion or implantation of stimulating electrodes. Previously, multifrequency transcutaneous stimulation has been demonstrated to penetrate to the spinal cord and lead to motor activation of detrusor and external urethral sphincter muscles. Here, we report on eight patients with idiopathic overactive bladder, who underwent 12 weeks of SCONEâ„¢ therapy. All patients reported statistically significant clinical improvement in multiple symptoms of overactive bladder, such as urinary urgency, frequency and urge incontinence. In addition, patients reported significant symptomatic improvements as captured by validated clinical surveys. SCONEâ„¢ therapy represents the first of its kind therapy to treat symptoms of urgency, frequency and urge urinary incontinence in patients with OAB. The study was listed on clinicaltrials.gov ()
Home-Based SCONE TM Therapy Improves Symptoms of Neurogenic Bladder
UDTRIASA wide range of dysfunction can occur after a stroke including symptoms such as urinary urgency, frequency, and urge incontinence. The Spinal Cord Neuromodulator (SCONE TM) reactivates and retrains spinal neural networks. The present case study introduces initial evidence that home-based, self-administered SCONE therapy may be a safe and effective method of delivering this neuromodulation modality and may have the ability to minimize clinic visits, which is especially salient in today's public health environment
Recommended from our members
Non-invasive Neuromodulation of Spinal Cord Restores Lower Urinary Tract Function After Paralysis.
It is commonly assumed that restoration of locomotion is the ultimate goal after spinal cord injury (SCI). However, lower urinary tract (LUT) dysfunction is universal among SCI patients and significantly impacts their health and quality of life. Micturition is a neurologically complex behavior that depends on intact sensory and motor innervation. SCI disrupts both motor and sensory function and leads to marked abnormalities in urine storage and emptying. Current therapies for LUT dysfunction after SCI focus on preventing complications and managing symptoms rather than restoring function. In this study, we demonstrate that Transcutaneous Electrical Spinal Stimulation for LUT functional Augmentation (TESSLA), a non-invasive neuromodulatory technique, can reengage the spinal circuits' active in LUT function and normalize bladder and urethral sphincter function in individuals with SCI. Specifically, TESSLA reduced detrusor overactivity (DO), decreased detrusor-sphincter dyssynergia (DSD), increased bladder capacity and enabled voiding. TESSLA may represent a novel approach to transform the intrinsic spinal networks to a more functionally physiological state. Each of these features has significant clinical implications. Improvement and restoration of LUT function after SCI stand to significantly benefit patients by improving their quality of life and reducing the risk of incontinence, kidney injury and urinary tract infection, all the while lowering healthcare costs
Recommended from our members
Electrocorticographic Activity of the Brain During Micturition
Current therapies for neurogenic bladder do not allow spinal cord injury patients to regain conscious control of urine storage or voiding. Novel neural technologies may provide means to improve or restore the connection between the brain and the bladder; however, the specific brain areas and their underlying neural activities responsible for micturition must be better understood in order to design such technologies. In this retrospective study, we analyzed electrocorticographic (ECoG) data obtained from epilepsy patients who underwent ECoG grid implantation for epilepsy surgery evaluation, in the hopes of determining specific electrophysiological activity associated with micturition. Our results indicate modulation of the delta (δ, 0.1-4 Hz) and low-gamma (\gamma, 25-50 Hz) activity in the peri-Sylvian area and the inferior temporal lobe. These findings suggest involvement of the insular cortex and the uncinate fasciculus in micturition, important structures related to sensation and decision making. To date, this is the first known study utilizing ECoG data to elucidate the electrophysiological activity of the brain associated with bladder control and sensation
Non-invasive Neuromodulation of Spinal Cord Restores Lower Urinary Tract Function After Paralysis
It is commonly assumed that restoration of locomotion is the ultimate goal after spinal cord injury (SCI). However, lower urinary tract (LUT) dysfunction is universal among SCI patients and significantly impacts their health and quality of life. Micturition is a neurologically complex behavior that depends on intact sensory and motor innervation. SCI disrupts both motor and sensory function and leads to marked abnormalities in urine storage and emptying. Current therapies for LUT dysfunction after SCI focus on preventing complications and managing symptoms rather than restoring function. In this study, we demonstrate that Transcutaneous Electrical Spinal Stimulation for LUT functional Augmentation (TESSLA), a non-invasive neuromodulatory technique, can reengage the spinal circuits' active in LUT function and normalize bladder and urethral sphincter function in individuals with SCI. Specifically, TESSLA reduced detrusor overactivity (DO), decreased detrusor-sphincter dyssynergia (DSD), increased bladder capacity and enabled voiding. TESSLA may represent a novel approach to transform the intrinsic spinal networks to a more functionally physiological state. Each of these features has significant clinical implications. Improvement and restoration of LUT function after SCI stand to significantly benefit patients by improving their quality of life and reducing the risk of incontinence, kidney injury and urinary tract infection, all the while lowering healthcare costs