228 research outputs found

    Stability of the CpG island methylator phenotype during glioma progression and identification of methylated loci in secondary glioblastomas

    Get PDF
    BACKGROUND: Grade IV glioblastomas exist in two forms, primary (de novo) glioblastomas (pGBM) that arise without precursor lesions, and the less common secondary glioblastomas (sGBM) which develop from earlier lower grade lesions. Genetic heterogeneity between pGBM and sGBM has been documented as have differences in the methylation of individual genes. A hypermethylator phenotype in grade IV GBMs is now well documented however there has been little comparison between global methylation profiles of pGBM and sGBM samples or of methylation profiles between paired early and late sGBM samples.METHODS: We performed genome-wide methylation profiling of 20 matched pairs of early and late gliomas using the Infinium HumanMethylation450 BeadChips to assess methylation at &gt;485,000 cytosine positions within the human genome.RESULTS: Clustering of our data demonstrated a frequent hypermethylator phenotype that associated with IDH1 mutation in sGBM tumors. In 80% of cases, the hypermethylator status was retained in both the early and late tumor of the same patient, indicating limited alterations to genome-wide methylation during progression and that the CIMP phenotype is an early event. Analysis of hypermethylated loci identified 218 genes frequently methylated across grade II, III and IV tumors indicating a possible role in sGBM tumorigenesis. Comparison of our sGBM data with TCGA pGBM data indicate that IDH1 mutated GBM samples have very similar hypermethylator phenotypes, however the methylation profiles of the majority of samples with WT IDH1 that do not demonstrate a hypermethylator phenotype cluster separately from sGBM samples, indicating underlying differences in methylation profiles. We also identified 180 genes that were methylated only in sGBM. Further analysis of these genes may lead to a better understanding of the pathology of sGBM vs pGBM.CONCLUSION: This is the first study to have documented genome-wide methylation changes within paired early/late astrocytic gliomas on such a large CpG probe set, revealing a number of genes that maybe relevant to secondary gliomagenesis.</p

    Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide

    Full text link
    A randomized, multicenter, open-label, phase 3 study of patients with progressive, recurrent glioblastoma multiforme (GBM) for whom front-line therapy had failed was conducted. This study was designed to determine whether combination therapy with imatinib and hydroxyurea (HU) has superior antitumor activity compared with HU monotherapy in the treatment of recurrent GBM. The target population consisted of patients with confirmed recurrent GBM and an Eastern Cooperative Oncology Group performance status of 0-2 who had completed previous treatment comprising surgical resection, irradiation therapy, and first-line chemotherapy (preferably temozolomide (TMZ) containing regimen) and who have progressed despite treatment. If first-line chemotherapy did not contain TMZ, a second completed chemotherapy was acceptable. The primary efficacy parameter was progression-free survival (PFS). The primary comparison of combination therapy versus monotherapy for PFS was not significant (adjusted P = 0.56). The hazard ratio (HR) (adjusted HR = 0.93) was not clinically relevant. The median PFS for the combination arm was low at 6 weeks and similar to the median PFS in the monotherapy arm (6 weeks). The 6-month PFS for the two treatment groups was very similar (5% in the combination arm vs. 7% in the monotherapy arm). No clinically meaningful differences were found between the two treatment arms, and the primary study end point was not met. Among the patients receiving imatinib, no adverse events were reported that were either previously unknown or unexpected as a consequence of the disease

    Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    Get PDF
    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs significantly associated to survival, namely rs2071559 and rs12502008. However, these results are likely to be false positives due to multiple testing and could not be confirmed in a separate dataset. Overall, this study provides little evidence that VEGF and VEGFR2 polymorphisms are important for glioblastoma survival

    Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastomas are the most common primary brain tumour in adults. While the prognosis for patients is poor, gene expression profiling has detected signatures that can sub-classify GBMs relative to histopathology and clinical variables. One category of GBM defined by a gene expression signature is termed ProNeural (PN), and has substantially longer patient survival relative to other gene expression-based subtypes of GBMs. Age of onset is a major predictor of the length of patient survival where younger patients survive longer than older patients. The reason for this survival advantage has not been clear.</p> <p>Methods</p> <p>We collected 267 GBM CEL files and normalized them relative to other microarrays of the same Affymetrix platform. 377 probesets on U133A and U133 Plus 2.0 arrays were used in a gene voting strategy with 177 probesets of matching genes on older U95Av2 arrays. Kaplan-Meier curves and Cox proportional hazard analyses were applied in distinguishing survival differences between expression subtypes and age.</p> <p>Results</p> <p>This meta-analysis of published data in addition to new data confirms the existence of four distinct GBM expression-signatures. Further, patients with PN subtype GBMs had longer survival, as expected. However, the age of the patient at diagnosis is not predictive of survival time when controlled for the PN subtype.</p> <p>Conclusion</p> <p>The survival benefit of younger age is nullified when patients are stratified by gene expression group. Thus, the main cause of the age effect in GBMs is the more frequent occurrence of PN GBMs in younger patients relative to older patients.</p

    Characterization of TEM1/endosialin in human and murine brain tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TEM1/endosialin </it>is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of <it>TEM1/endosialin </it>in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models.</p> <p>Methods</p> <p><it>In situ </it>hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize <it>TEM1/endosialin </it>expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in <it>TEM1/endosialin </it>expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown <it>in vitro</it>. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude <it>TEM1/endosialin </it>knockout (KO) and wildtype (WT) mice.</p> <p>Results</p> <p><it>TEM1/endosialin </it>was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated <it>TEM1/endosialin </it>expression in 79% of tumors. Robust <it>TEM1/endosialin </it>expression occurred in 31% of glioblastomas (grade IV astroctyomas). <it>TEM1/endosialin </it>expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. <it>In vitro</it>, <it>TEM1/endosialin </it>was upregulated in human endothelial cells cultured in matrigel. Vascular <it>Tem1/endosialin </it>was induced in intracranial U87MG GBM xenografts grown in mice. <it>Tem1/endosialin </it>KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although <it>Tem1/endosialin </it>KO tumors were significantly more vascular than the WT counterparts.</p> <p>Conclusion</p> <p><it>TEM1/endosialin </it>was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of <it>TEM1/endosialin </it>did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of <it>TEM1/endosialin </it>and its expression profile in primary and metastatic brain tumors support efforts to therapeutically target this protein, potentially via antibody mediated drug delivery strategies.</p

    The role of Allee effect in modelling post resection recurrence of glioblastoma

    Get PDF
    Resection of the bulk of a tumour often cannot eliminate all cancer cells, due to their infiltration into the surrounding healthy tissue. This may lead to recurrence of the tumour at a later time. We use a reaction-diffusion equation based model of tumour growth to investigate how the invasion front is delayed by resection, and how this depends on the density and behaviour of the remaining cancer cells. We show that the delay time is highly sensitive to qualitative details of the proliferation dynamics of the cancer cell population. The typically assumed logistic type proliferation leads to unrealistic results, predicting immediate recurrence. We find that in glioblastoma cell cultures the cell proliferation rate is an increasing function of the density at small cell densities. Our analysis suggests that cooperative behaviour of cancer cells, analogous to the Allee effect in ecology, can play a critical role in determining the time until tumour recurrence

    AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma

    Get PDF
    A causative understanding of genetic factors that regulate glioblastoma pathogenesis is of central importance. Here we developed an adeno-associated virus-mediated, autochthonous genetic CRISPR screen in glioblastoma. Stereotaxic delivery of a virus library targeting genes commonly mutated in human cancers into the brains of conditional-Cas9 mice resulted in tumors that recapitulate human glioblastoma. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlated with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo

    DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development

    Get PDF
    Background: Diffuse lower WHO grade II and III gliomas (LGG) are slowly progressing brain tumors, many of which eventually transform into a more aggressive type. LGG is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the heterogeneity of the DNA methylome, its function in tumor biology, coupling with the transcriptome and tumor microenvironment and its possible impact for tumor development. Methods: We here present novel DNA methylation data of an LGG-cohort collected in the German Glioma Network containing about 85% isocitrate dehydrogenase (IDH) mutated tumors and performed a combined bioinformatics analysis using patient-matched genome and transcriptome data. Results: Stratification of LGG based on gene expression and DNA-methylation provided four consensus subtypes. We characterized them in terms of genetic alterations, functional context, cellular composition, tumor microenvironment and their possible impact for treatment resistance and prognosis. Glioma with astrocytoma-resembling phenotypes constitute the largest fraction of nearly 60%. They revealed largest diversity and were divided into four expression and three methylation groups which only partly match each other thus reflecting largely decoupled expression and methylation patterns. We identified a novel G-protein coupled receptor and a cancer-related ‘keratinization’ methylation signature in in addition to the glioma-CpG island methylator phenotype (G-CIMP) signature. These different signatures overlap and combine in various ways giving rise to diverse methylation and expression patterns that shape the glioma phenotypes. The decrease of global methylation in astrocytoma-like LGG associates with higher WHO grade, age at diagnosis and inferior prognosis. We found analogies between astrocytoma-like LGG with grade IV IDH-wild type tumors regarding possible worsening of treatment resistance along a proneural-to-mesenchymal axis. Using gene signature-based inference we elucidated the impact of cellular composition of the tumors including immune cell bystanders such as macrophages. Conclusions: Genomic, epigenomic and transcriptomic factors act in concert but partly also in a decoupled fashion what underpins the need for integrative, multidimensional stratification of LGG by combining these data on gene and cellular levels to delineate mechanisms of gene (de-)regulation and to enable better patient stratification and individualization of treatment

    Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma

    Get PDF
    Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson’s r=0.62; p<3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy
    corecore