5,978 research outputs found
Aggregation and stability in parasite-host models
Journal ArticleThis paper generalizes the two-dimensional approximation of models of macroparasites on homogeneous populations developed by Anderson & May (1978), focusing on how the dispersion (the variance to mean ratio) of the equilibrium distribution of parasites on hosts is related to the stability of the equilibrium. We show in the approximate system that the equilibrium is stabilized not by aggregation, but by dispersion which increases as a function of the mean. Computer simulations indicate, however, that this analysis fails to capture properly the dynamics of the full system, raising the question of whether any two-dimensional system could produce an adequate approximation. We discuss the relevance of our results to several empirical studies which have examined the relation of dispersion to the mean
The Alzheimer variant of Lewy body disease: A pathologically confirmed case-control study
The objective of the study was to identify clinical features that distinguish patients with dementia with Lewy bodies (DLB), who were classified as Alzheimer's disease ( AD) patients, from patients with AD. We examined a group of 27 patients from our memory clinic, originally diagnosed with AD, of whom 6 were postmortem found to have DLB. For the present study, we compared cognitive, noncognitive and neurological symptoms between the two groups. We found that there were no differences on ratings of dementia and scales for activities of daily living. Patients with DLB performed better on the MMSE and the memory subtest of the CAMCOG, but there was no difference in any other cognitive domain. Furthermore, genetic risk factors, including family history of dementia or allele frequency of the apolipoprotein epsilon 4, did not discriminate between the two groups, and there were no differences on CCT scans. Taken together, our findings suggest that Lewy body pathology may be present in patients who do not show the typical clinical features which distinguish DLB from AD. Copyright (C) 2005 S. Karger AG, Basel
Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry
Ramsey's method of separated oscillatory fields is applied to the excitation
of the cyclotron motion of short-lived ions in a Penning trap to improve the
precision of their measured mass. The theoretical description of the extracted
ion-cyclotron-resonance line shape is derived out and its correctness
demonstrated experimentally by measuring the mass of the short-lived Ca
nuclide with an uncertainty of using the ISOLTRAP Penning
trap mass spectrometer at CERN. The mass value of the superallowed beta-emitter
Ca is an important contribution for testing the conserved-vector-current
hypothesis of the electroweak interaction. It is shown that the Ramsey method
applied to mass measurements yields a statistical uncertainty similar to that
obtained by the conventional technique ten times faster.Comment: 5 pages, 4 figures, 0 table
Calcium isotope fractionation in alpine plants
In order to develop Ca isotopes as a tracer for biogeochemical Ca cycling in terrestrial environments and for Ca utilisation in plants, stable calcium isotope ratios were measured in various species of alpine plants, including woody species, grasses and herbs. Analysis of plant parts (root, stem, leaf and flower samples) provided information on Ca isotope fractionation within plants and seasonal sampling of leaves revealed temporal variation in leaf Ca isotopic composition. There was significant Ca isotope fractionation between soil and root tissue \Updelta^{44/42}\hbox{Ca}_{\rm root-soil} \approx -0.40\,\permille in all investigated species, whereas Ca isotope fractionation between roots and leaves was species dependent. Samples of leaf tissue collected throughout the growing season also highlighted species differences: Ca isotope ratios increased with leaf age in woody species but remained constant in herbs and grasses. The Ca isotope fractionation between roots and soils can be explained by a preferential binding of light Ca isotopes to root adsorption sites. The observed differences in whole plant Ca isotopic compositions both within and between species may be attributed to several potential factors including root cation exchange capacity, the presence of a woody stem, the presence of Ca oxalate, and the levels of mycorrhizal infection. Thus, the impact of plants on the Ca biogeochemical cycle in soils, and ultimately the Ca isotope signature of the weathering flux from terrestrial environments, will depend on the species present and the stage of vegetation successio
A balancing act: Evidence for a strong subdominant d-wave pairing channel in
We present an analysis of the Raman spectra of optimally doped based on LDA band structure calculations and the
subsequent estimation of effective Raman vertices. Experimentally a narrow,
emergent mode appears in the () Raman spectra only below
, well into the superconducting state and at an energy below twice the
energy gap on the electron Fermi surface sheets. The Raman spectra can be
reproduced quantitatively with estimates for the magnitude and momentum space
structure of the s pairing gap on different Fermi surface sheets, as
well as the identification of the emergent sharp feature as a
Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a
subdominant channel. The binding energy of the exciton relative
to the gap edge shows that the coupling strength in this subdominant
channel is as strong as 60% of that in the dominant
channel. This result suggests that may be the dominant pairing
symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure
Link and subgraph likelihoods in random undirected networks with fixed and partially fixed degree sequence
The simplest null models for networks, used to distinguish significant
features of a particular network from {\it a priori} expected features, are
random ensembles with the degree sequence fixed by the specific network of
interest. These "fixed degree sequence" (FDS) ensembles are, however, famously
resistant to analytic attack. In this paper we introduce ensembles with
partially-fixed degree sequences (PFDS) and compare analytic results obtained
for them with Monte Carlo results for the FDS ensemble. These results include
link likelihoods, subgraph likelihoods, and degree correlations. We find that
local structural features in the FDS ensemble can be reasonably well estimated
by simultaneously fixing only the degrees of few nodes, in addition to the
total number of nodes and links. As test cases we use a food web, two protein
interaction networks (\textit{E. coli, S. cerevisiae}), the internet on the
autonomous system (AS) level, and the World Wide Web. Fixing just the degrees
of two nodes gives the mean neighbor degree as a function of node degree,
, in agreement with results explicitly obtained from rewiring. For
power law degree distributions, we derive the disassortativity analytically. In
the PFDS ensemble the partition function can be expanded diagrammatically. We
obtain an explicit expression for the link likelihood to lowest order, which
reduces in the limit of large, sparse undirected networks with links and
with to the simple formula . In a
similar limit, the probability for three nodes to be linked into a triangle
reduces to the factorized expression .Comment: 17 pages, includes 11 figures; first revision: shortened to 14 pages
(7 figures), added discussion of subgraph counts, deleted discussion of
directed network
Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations
Many genebanks rely on cryopreservation as a method to preserve vulnerable field collections of vegetatively propagated crops. Effective cryopreservation procedures have been identified for Vitis; however, they usually use in vitro plantlets as the shoot tip source materials. It is costly to establish Vitis collections in vitro prior to cryopreservation. We sought to determine if growth chamber derived Vitis plants could serve as the source of shoot tips for cryopreservation. Nodal sections from growth chamber derived plants were surface-disinfected and placed in tissue culture on pre-treatment medium for 2 weeks. Uniform apical shoot tips (1 mm) were first obtained from the nodal sections and then precultured for 3 days on medium containing 0.3 M sucrose, salicylic acid, glutathione (reduced form), ascorbic acid and plant preservative mixture. Half-strength PVS2 was applied for 30 min at 22 °C, prior to full-strength PVS2 treatment at 0 °C. Cryopreserved shoot tips had the highest average regrowth of 50 and 55 % without and with cold-acclimation followed with a full-strength PVS2 exposure duration of 40 and 30 min at 0 °C, respectively. This cryopreservation protocol achieved high percentages of regrowth in V. vinifera 'Chardonnay' and 'Riesling' and V. hybrid 'Oppenheim'. Histological observations revealed that shoot tips from growth chamber plants had apical as well as multiple lateral meristems that survived LN immersion. The preservation of multiple meristems in each shoot tip may increase the capacity of shoot tip regeneration in cryopreserved Vitis that originates from ex vitro sources. The high percentage of regrowth after shoot tip cryopreservation using Vitis shoot tips derived from growth chamber source plants suggest that it may be possible to cryopreserve Vitis shoot tips without first introducing each accession into tissue culture
Ion dynamics in perturbed quadrupole ion traps
Published versio
White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)
Background;
Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM.
Methods;
We used post‐mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro‐caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles.
Results;
The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (P < 0.01) with the WM underlying the primary motor cortex exhibiting the most severe change. SMI32 immunoreactive axons in CADASIL were invariably increased compared with controls (P < 0.01), with most prominent axonal abnormalities observed in the frontal WM (P < 0.05). The SIs of arterioles in CADASIL were increased by 25–45% throughout the regions assessed, with the highest change in the mid‐frontal region (P = 0.000).
Conclusions;
Our results suggest disruption of either cortico‐cortical or subcortical‐cortical networks in the WM of the frontal lobe that may explain motor deficits and executive dysfunction in CADASIL. Widespread WM axonal changes arise from differential stenosis and sclerosis of arterioles in the WM of CADASIL subjects, possibly affecting some axons of projection neurones connecting to targets in the subcortical structures
Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam
A measurement of the neutron lifetime performed by the absolute
counting of in-beam neutrons and their decay protons has been completed.
Protons confined in a quasi-Penning trap were accelerated onto a silicon
detector held at a high potential and counted with nearly unit efficiency. The
neutrons were counted by a device with an efficiency inversely proportional to
neutron velocity, which cancels the dwell time of the neutron beam in the trap.
The result is s, which
is the most precise measurement of the lifetime using an in-beam method. The
systematic uncertainty is dominated by neutron counting, in particular the mass
of the deposit and the Li({\it{n,t}}) cross section. The measurement
technique and apparatus, data analysis, and investigation of systematic
uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR
- …