76 research outputs found

    Myc and Max proteins possess distinct transcriptional activities.

    No full text
    The Myc family proteins are thought to be involved in transcription because they have both a carboxy-terminal basic-helix-loop-helix-zipper (bHLH-Z) domain, common to a large class of transcription factors, and an amino-terminal fragment which, for c-Myc, has transactivating function when assayed in chimaeric constructs. In addition, c-, N- and L-Myc proteins heterodimerize, in vitro and in vivo, with the bHLH-Z protein Max. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly. Furthermore Myc-Max heterodimers specifically bind the nucleotide sequence CACGTG with higher affinity than either homodimer alone. The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells. We report here that Myc overexpression activates, whereas Max overexpression represses, transcription of a reporter gene. Max-induced repression is relieved by overexpression of c-Myc. Repression requires the DNA-binding domain of Max, whereas relief of repression requires the dimerization and transcriptional activation activities of Myc. Both effects require Myc-Max-binding sites in the reporter gene

    Sequence-specific DNA binding by the c-Myc protein.

    No full text
    While it has been known for some time that the c-Myc protein binds to random DNA sequences, no sequence-specific binding activity has been detected. At its carboxyl terminus, c-Myc contains a basic--helix-loop-helix (bHLH) motif, which is important for dimerization and specific DNA binding, as demonstrated for other bHLH protein family members. Of those studied, most bHLH proteins bind to sites that contain a CA- -TG consensus. In this study, the technique of selected and amplified binding-sequence (SAAB) imprinting was used to identify a DNA sequence that was recognized by c-Myc. A purified carboxyl-terminal fragment of human c-Myc that contained the bHLH domain bound in vitro in a sequence-specific manner to the sequence, CACGTG. These results suggest that some of the biological functions of Myc family proteins are accomplished by sequence-specific DNA binding that is mediated by the carboxyl-terminal region of the protein

    Binding of myc proteins to canonical and noncanonical DNA sequences.

    No full text
    Using an in vitro binding-site selection assay, we have demonstrated that c-Myc-Max complexes bind not only to canonical CACGTG or CATGTG motifs that are flanked by variable sequences but also to noncanonical sites that consist of an internal CG or TG dinucleotide in the context of particular variations in the CA--TG consensus. None of the selected sites contain an internal TA dinucleotide, suggesting that Myc proteins necessarily bind asymmetrically in the context of a CAT half-site. The noncanonical sites can all be bound by proteins of the Myc-Max family but not necessarily by the related CACGTG- and CATGTG-binding proteins USF and TFE3. Substitution of an arginine that is conserved in these proteins into MyoD (MyoD-R) changes its binding specificity so that it recognizes CACGTG instead of the MyoD cognate sequence (CAGCTG). However, like USF and TFE3, MyoD-R does not bind to all of the noncanonical c-Myc-Max sites. Although this R substitution changes the internal dinucleotide specificity of MyoD, it does not significantly alter its wild-type binding sequence preferences at positions outside of the CA--TG motif, suggesting that it does not dramatically change other important amino acid-DNA contacts; this observation has important implications for models of basic-helix-loop-helix protein-DNA binding

    Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein.

    No full text
    Activation of the c-myc proto-oncogene by chromosomal translocation or proviral insertion frequently results in the separation of the c-myc coding region from its normal regulatory elements. Such rearrangements are often accompanied by loss or mutation of c-myc exon 1 sequences. These genetic alterations do not affect synthesis of the major c-myc protein, p64, which is initiated from the first AUG codon in exon 2. However they can result in mutation or loss of the CUG codon located in exon 1 that normally serves as an alternative translational initiation codon for synthesis of an N-terminally extended form of c-Myc (p67). It has been hypothesized that p67 is a functionally distinct form of c-Myc whose specific loss during c-myc rearrangements confers a selective growth advantage. Here we describe experiments designed to test the functional properties of the two c-Myc protein forms. We introduced mutations within the translational initiation codons of a normal human c-myc cDNA that alter the pattern of Myc protein synthesis (p64 vs. p67). The functions of each of these proteins were experimentally addressed using co-transformation and transcriptional activation assays. Both the p64 and p67 c-Myc proteins were independently able to collaborate with bcr-abl in the transformation of Rat-1 fibroblasts. In addition, both the exon 1- and exon 2-initiated forms of the c-Myc protein stimulated transcription of a Myc/Max-responsive reporter construct to a similar level. Given the apparent absence of functional differences between p64 and p67, we conclude that the basis for c-Myc oncogenic activation lies primarily in the overall deregulation of its expression and not in alterations in the protein. The existence of the CUG translational initiator may reflect a mechanism for the continued synthesis of c-Myc protein under conditions where AUG initiation is inhibited
    corecore