20 research outputs found

    Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming

    Get PDF
    Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies

    Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis

    Get PDF
    BACKGROUND: Epigenetic mechanisms regulate gene expression patterns affecting cell function and differentiation. In this report, we examine the role of histone acetylation in gene expression regulation in mouse embryonic stem cells employing transcriptomic and epigenetic analysis. RESULTS: Embryonic stem cells treated with the histone deacetylase inhibitor Trichostatin A (TSA), undergo morphological and gene expression changes indicative of differentiation. Gene profiling utilizing Affymetrix microarrays revealed the suppression of important pluripotency factors, including Nanog, a master regulator of stem cell identity, and the activation of differentiation-related genes. Transcriptional and epigenetic changes induced after 6-12 hours of TSA treatment mimic those that appear during embryoid body differentiation. We show here that the early steps of stem cell differentiation are marked by the enhancement of bulk activatory histone modifications. At the individual gene level, we found that transcriptional reprogramming triggered by histone deacetylase inhibition correlates with rapid changes in activating K4 trimethylation and repressive K27 trimethylation of histone H3. The establishment of H3K27 trimethylation is required for stable gene suppression whereas in its absence, genes can be reactivated upon TSA removal. CONCLUSION: Our data suggest that inhibition of histone deacetylases accelerates the early events of differentiation by regulating the expression of pluripotency- and differentiation-associated genes in an opposite manner. This analysis provides information about genes that are important for embryonic stem cell function and the epigenetic mechanisms that regulate their expression

    Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A

    Get PDF
    The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with DRA transcription after TSA treatment. We found that a dramatic increase in promoter linked histone acetylation is followed by an increase in Histone H3 lysine 4 methylation and a decrease of lysine 9 methylation. Fluorescence recovery after photobleaching (FRAP) experiments showed that TSA increases the mobility of HDAC while decreasing the mobility of the class II enhanceosome factor RFX5. These data, in combination with ChIP experiments, indicate that the TSA-mediated induction of DRA transcription involves HDAC relocation and enhanceosome stabilization. In order to gain a genome-wide view of the genes responding to inhibition of deacetylases, we compared the transcriptome of B cells before and after TSA treatment using Affymetrix microarrays. This analysis showed that in addition to the DRA gene, the entire MHC II family and the adjacent histone cluster that are located in chromosome 6p21-22 locus are strongly induced by TSA. A complex pattern of gene reprogramming by TSA involves immune recognition, antiviral, apoptotic and inflammatory pathways and extends the rationale for using Histone Deacetylase Inhibitors (HDACi) to modulate the immune response

    The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    Get PDF
    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells

    Etude de l'organisation genomique et de l'expression des genes globine aviaires

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    MicroRNAs for Fine-Tuning of Mouse Embryonic Stem Cell Fate Decision through Regulation of TGF-β Signaling

    Get PDF
    Over the past years, microRNAs (miRNAs) have emerged as crucial factors that regulate self-renewal and differentiation of embryonic stem cells (ESCs). Although much is known about their role in maintaining ESC pluripotency, the mechanisms by which they affect cell fate decisions remain poorly understood. By performing deep sequencing to profile miRNA expression in mouse ESCs (mESCs) and differentiated embryoid bodies (EBs), we identified four differentially expressed miRNAs. Among them, miR-191 and miR-16-1 are highly expressed in ESCs and repress Smad2, the most essential mediator of Activin-Nodal signaling, resulting in the inhibition of mesendoderm formation. miR-23a, which is also down-regulated in the differentiated state, suppresses differentiation toward the endoderm and ectoderm lineages. We further identified miR-421 as a differentiation-associated regulator through the direct repression of the core pluripotency transcription factor Oct4 and the bone morphogenetic protein (BMP)-signaling components, Smad5 and Id2. Collectively, our findings uncover a regulatory network between the studied miRNAs and both branches of TGF-β/BMP-signaling pathways, revealing their importance for ESC lineage decisions
    corecore