213 research outputs found
A Pathwise Ergodic Theorem for Quantum Trajectories
If the time evolution of an open quantum system approaches equilibrium in the
time mean, then on any single trajectory of any of its unravelings the time
averaged state approaches the same equilibrium state with probability 1. In the
case of multiple equilibrium states the quantum trajectory converges in the
mean to a random choice from these states.Comment: 8 page
Glucose kinase of Streptomyces coelicolor A3(2): large-scale purification and biochemical analysis
Metals in Catalysis, Biomimetics & Inorganic Material
Some results about diagonal operators on Köthe echelon spaces
[EN] Several questions about diagonal operators between Köthe echelon spaces are investigated: (1) The spectrum is characterized in terms of the Köthe matrices defining the spaces, (2) It is characterized when these operators are power bounded, mean ergodic or uniformly mean ergodic, and (3) A description of the topology in the space of diagonal operators induced by the strong topology on the space of all operators is given.This research was partially supported by MINECO Project MTM2016-76647-P and the grant PAID-01-16 of the Universitat Politècnica de València.Rodríguez-Arenas, A. (2019). Some results about diagonal operators on Köthe echelon spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):2959-2968. https://doi.org/10.1007/s13398-019-00663-yS295929681134Agathen, S., Bierstedt, K.D., Bonet, J.: Projective limits of weighted (LB)-spaces of continuous functions. Arch. Math. 92, 384–398 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34(2), 401–436 (2009)Bennett, G.: Some elementary inequalities. Quart. J. Math. 38, 401–425 (1987)Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. (1996). https://doi.org/10.1090/memo/0576Bierstedt, K.D.: An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986), 35–133, ICPAM Lecture Notes. World Sci. Publishing, Singapore (1988)Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97(2), 159–188 (2003)Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory. North-Holland Math. Studies 71, 27–91 (1982)Bonet, J., Jordá, E., Rodríguez-Arenas, A.: Mean ergodic multiplication operators on weighted spaces of continuous functions. Mediterr. J. Math 15, 108 (2018)Crofts, G.: Concerning perfect Fréchet spaces and transformations. Math. Ann. 182, 67–76 (1969)Kellogg, C.N.: An extension of the Hausdorff–Young theorem. Michig. Math. J. 18, 121–127 (1971)Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, New York (1997)Vasilescu, F.H.: Analytic Functional Calculus and Spectral Decompositions. D. Reidel Publ. Co., Dordrecht (1982)Wengenroth, J.: Derived Functors in Functional Analysis. Springer, Berlin (2003)Yosida, K.: Functional Analysis. Springer, Berlin (1980
Weighted ergodic theorems for Banach-Kantorovich lattice
In the present paper we prove weighted ergodic theorems and multiparameter
weighted ergodic theorems for positive contractions acting on
. Our main tool is the use of methods of
measurable bundles of Banach-Kantorovich lattices.Comment: 11 page
A New Method to Estimate the Noise in Financial Correlation Matrices
Financial correlation matrices measure the unsystematic correlations between
stocks. Such information is important for risk management. The correlation
matrices are known to be ``noise dressed''. We develop a new and alternative
method to estimate this noise. To this end, we simulate certain time series and
random matrices which can model financial correlations. With our approach,
different correlation structures buried under this noise can be detected.
Moreover, we introduce a measure for the relation between noise and
correlations. Our method is based on a power mapping which efficiently
suppresses the noise. Neither further data processing nor additional input is
needed.Comment: 25 pages, 8 figure
Mean ergodic composition operators on generalized Fock spaces
[EN] Every bounded composition operator C psi defined by an analytic symbol psi on the complex plane when acting on generalized Fock spaces F phi p,1 <= p <=infinity and p=0, is power bounded. Mean ergodic and uniformly mean ergodic bounded composition operators on these spaces are characterized in terms of the symbol. The behaviour for p=0 and p=infinity differs. The set of periodic points of these operators is also determined.The research of the first author is supported by ISP project, Addis Ababa University, Ethiopia. The research of the third author was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain).Seyoum, W.; Mengestie, T.; Bonet Solves, JA. (2019). Mean ergodic composition operators on generalized Fock spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(1):1-11. https://doi.org/10.1007/s13398-019-00738-wS1111141Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Anal. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Beltrán-Meneu, M.J., Gómez-Collado, M.C., Jordá, E., Jornet, D.: Mean ergodic composition operators on Banach spaces of holomorphic functions. J. Funct. Anal. 270, 4369–4385 (2016)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austr. Math. Soc. Ser. A 54, 70–79 (1993)Blasco, O.: Boundedness of Volterra operators on spaces of entire functions. Ann. Acad. Sci. Fenn. Math. 43, 89–107 (2018)Bonet, J., Domański, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105, 389–396 (2011)Bonet, J., Mangino, E.: Associated weights for spaces of -integrable entire functions. Quaestiones Math. (2019). https://doi.org/10.2989/16073606.2019.1605420Bonet, J., Ricker, W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009)Carswell, B.J., MacCluer, B.D., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. (Szeged) 69, 871–887 (2003)Constantin, O., Peláez, J.Á.: Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2015)Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)Dunford, N.: Spectral theory I convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Guo, K., Izuchi, K.: Composition operators on Fock type space. Acta Sci. Math. (Szeged) 74, 807–828 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lotz, H.P.: Tauberian theorems for operators on and similar spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds.) Functional Analysis: Surveys and Recent Results III, pp. 117–133. North Holland, Amsterdam (1984)Lotz, H.P.: Uniform convergence of operators on and similar spaces. Math. Z. 190, 207–220 (1985)Lusky, W.: On the isomophism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory. 13, 935–958 (2019)Mengestie, T., Seyoum, W.: Topological and dynamical properties of composition operators. Complex Anal. Oper. Theory (2018) (to appear)Mengestie, T., Seyoum, W.: Spectral properties of composition operators on Fock-Type spaces. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1692092Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)Wolf, E.: Power bounded composition operator. Comp. Method Funct. Theory 12, 105–117 (2012)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Markoff’s Process and Mean Ergodic Theorem. Ann. Math. 42, 188–228 (1941
Decomposition of operator semigroups on W*-algebras
We consider semigroups of operators on a W-algebra and prove, under
appropriate assumptions, the existence of a Jacobs-DeLeeuw-Glicksberg type
decomposition. This decomposition splits the algebra into a "stable" and
"reversible" part with respect to the semigroup and yields, among others, a
structural approach to the Perron-Frobenius spectral theory for completely
positive operators on W-algebras.Comment: referee's comments incorporated. To appear in Semigroup Foru
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
Mean ergodic multiplication operators on weighted spaces of continuous functions
[EN] Multiplication operators on weighted Banach spaces and locally convex spaces of continuous functions have been thoroughly studied. In this note, we characterize when continuous multiplication operators on a weighted Banach space and on a weighted inductive limit of Banach spaces of continuous functions are power bounded, mean ergodic or uniformly mean ergodic. The behaviour of the operator on weighted inductive limits depends on the properties of the defining sequence of weights and it differs from the Banach space case.The research of Bonet was partially supported by Project Prometeo/2017/102 of the Generalitat Valenciana. The authors authors were also partially supported by MINECO Project MTM2016-76647-P. Rodriguez also thanks the support of the Grant PAID-01-16 of the Universitat Politecnica de Valencia.Bonet Solves, JA.; Jorda Mora, E.; Rodríguez-Arenas, A. (2018). Mean ergodic multiplication operators on weighted spaces of continuous functions. Mediterranean Journal of Mathematics. 15(3):1:108-11:108. https://doi.org/10.1007/s00009-018-1150-8S1:10811:108153Bierstedt, K.D.: An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986), 35–133, ICPAM Lecture Notes. World Sci. Publishing, Singapore (1988)Bierstedt, K.D.: A survey of some results and open problems in weighted inductive limits and projective description for spaces of holomorphic functions. Bull. Soc. Roy. Sci. Liège 70(4–6), 167–182 (2001)Bierstedt, K.D., Bonet, J.: Some recent results on VC(X). In: Advances in the theory of Fréchet spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 287, pp. 181–194. Kluwer Acad. Publ., Dordrecht (1989)Bierstedt, K.D., Bonet, J.: Completeness of the (LB)-spaces VC(X). Arch. Math. (Basel) 56(3), 281–285 (1991)Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat 97(2), 159–188 (2003)Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272(1), 107–160 (1982)Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces. In: Functional analysis, holomorphy and approximation theory, Rio de Janeiro, pp. 27–91 (1980)Bonet, J., Ricker, W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009)Klilou, M., Oubbi, L.: Multiplication operators on generalized weighted spaces of continuous functions. Mediterr. J. Math. 13(5), 3265–3280 (2016)Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 2 (1974)Lotz, H.P.: Uniform convergence of operators on L ∞ and similar spaces. Math. Z. 190, 207–220 (1985)Manhas, J.S.: Compact multiplication operators on weighted spaces of vector-valued continuous functions. Rocky Mt. J. Math. 34(3), 1047–1057 (2004)Manhas, J.S.: Compact and weakly compact multiplication operators on weighted spaces of vector-valued continuous functions. Acta Sci. Math. (Szeged) 70(1–2), 361–372 (2004)Manhas, J.S., Singh, R.K.: Compact and weakly compact weighted composition operators on weighted spaces of continuous functions. Integral Equ. Oper. Theory 29(1), 63–69 (1997)Meise, R., Vogt, D.: Introduction to Functional Analysis. The Clarendon Press, Oxford University Press, New York (1997)Oubbi, L.: Multiplication operators on weighted spaces of continuous functions. Port. Math. (N.S.) 59(1), 111–124 (2002)Oubbi, L.: Weighted composition operators on non-locally convex weighted spaces. Rocky Mt. J. Math. 35(6), 2065–2087 (2005)Singh, R.K., Manhas, J.S.: Multiplication operators on weighted spaces of vector-valued continuous functions. J. Austral. Math. Soc. Ser. A 50(1), 98–107 (1991)Singh, R.K., Manhas, J.S.: Composition operators on function spaces. North-Holland Publishing Co., Amsterdam (1993)Singh, R.K., Manhas, J.S.: Operators and dynamical systems on weighted function spaces. Math. Nachr. 169, 279–285 (1994)Wilanski, A.: Topology for Analysis. Ginn, Waltham (1970)Yosida, K.: Functional Analysis. Springer, Berlin (1980
Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces
[EN] Various dynamical properties of the differentiation and Volterra-type integral operators on generalized Fock spaces are studied. We show that the differentiation operator is always supercyclic on these spaces. We further characterize when it is hypercyclic, power bounded and uniformly mean ergodic. We prove that the operator satisfies the Ritt's resolvent condition if and only if it is power bounded and uniformly mean ergodic. Some similar results are obtained for the Volterra-type and Hardy integral operators.J. Bonet was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). M. Worku is supported by ISP project, Addis Ababa University, Ethiopia.Bonet Solves, JA.; Mengestie, T.; Worku, M. (2019). Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces. Results in Mathematics. 74(4):1-15. https://doi.org/10.1007/s00025-019-1123-7S115744Abanin, A.V., Tien, P.T.: Differentiation and integration operators on weighted Banach spaces of holomorphic functions. Math. Nachr. 290(8–9), 1144–1162 (2017)Atzmon, A., Brive, B.: Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, pp. 27–39 (2006)Bayart, F., Matheron, E.: Dynamics of Linear Operators, Cambridge Tracts in Math, vol. 179. Cambridge Univ. Press, Cambridge (2009)Bermúdez, T., Bonilla, A., Peris, A.: On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70, 45–54 (2004)Beltrán, M.J.: Dynamics of differentiation and integration operators on weighted space of entire functions. Studia Math. 221, 35–60 (2014)Beltrán, M.J., Bonet, J., Fernández, C.: Classical operators on weighted Banach spaces of entire functions. Proc. Am. Math. Soc. 141, 4293–4303 (2013)Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)Bonet, J.: Dynamics of the differentiation operator on weighted spaces of entire functions. Math. Z. 26, 649–657 (2009)Bonet, J.: The spectrum of Volterra operators on weighted Banach spaces of entire functions. Q. J. Math. 66, 799–807 (2015)Bonet, J., Bonilla, A.: Chaos of the differentiation operator on weighted Banach spaces of entire functions. Complex Anal. Oper. Theory 7, 33–42 (2013)Bonet, J., Taskinen, J.: A note about Volterra operators on weighted Banach spaces of entire functions. Math. Nachr. 288, 1216–1225 (2015)Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. Lond. Math. Soc. 47, 958–963 (2015)Constantin, O., Peláez, J.-Á.: Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2016)De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum is not hypercyclic. J. Oper. Theory 61, 369–380 (2009)Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Springer, New York (2011)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lyubich, Yu.: Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition. Studia Mathematica 143(2), 153–167 (1999)Mengestie, T.: A note on the differential operator on generalized Fock spaces. J. Math. Anal. Appl. 458(2), 937–948 (2018)Mengestie, T.: Spectral properties of Volterra-type integral operators on Fock–Sobolev spaces. J. Kor. Math. Soc. 54(6), 1801–1816 (2017)Mengestie, T.: On the spectrum of volterra-type integral operators on Fock–Sobolev spaces. Complex Anal. Oper. Theory 11(6), 1451–1461 (2017)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory 13, 935–95 (2019)Mengestie, T., Worku, M.: Isolated and essentially isolated Volterra-type integral operators on generalized Fock spaces. Integr. Transf. Spec. Funct. 30, 41–54 (2019)Nagy, B., Zemanek, J.A.: A resolvent condition implying power boundedness. Studia Math. 134, 143–151 (1999)Nevanlinna, O.: Convergence of iterations for linear equations. Lecture Notes in Mathematics. ETH Zürich, Birkhäuser, Basel (1993)Ritt, R.K.: A condition that . Proc. Am. Math. Soc. 4, 898–899 (1953)Ueki, S.: Characterization for Fock-type space via higher order derivatives and its application. Complex Anal. Oper. Theory 8, 1475–1486 (2014)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Marko’s process and mean ergodic theorem. Ann. Math. 42(1), 188–228 (1941
- …