5,260 research outputs found

    Statistical mechanics of double-stranded semi-flexible polymers

    Full text link
    We study the statistical mechanics of double-stranded semi-flexible polymers using both analytical techniques and simulation. We find a transition at some finite temperature, from a type of short range order to a fundamentally different sort of short range order. In the high temperature regime, the 2-point correlation functions of the object are identical to worm-like chains, while in the low temperature regime they are different due to a twist structure. In the low temperature phase, the polymers develop a kink-rod structure which could clarify some recent puzzling experiments on actin.Comment: 4 pages, 3 figures; final version for publication - slight modifications to text and figure

    Evidence of secondary relaxations in the dielectric spectra of ionic liquids

    Full text link
    We investigated the dynamics of a series of room temperature ionic liquids based on the same 1-butyl-3-methyl imidazolium cation and different anions by means of broadband dielectric spectroscopy covering 15 decades in frequency (10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An ionic conductivity is observed above the glass transition temperature T_{g} with a relaxation in the electric modulus representation. Below T_{g}, two relaxation processes appear, with the same features as the secondary relaxations typically observed in molecular glasses. The activation energy of the secondary processes and their dependence on the anion are different. The slower process shows the characteristics of an intrinsic Johari-Goldstein relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found, as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let

    Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure

    Get PDF
    We present an experimental lattice location study of Ga atoms in Ge after ion implantation at elevated temperature (250°C). Using extended x-rayabsorption fine structure (EXAFS) experiments and a dedicated sample preparation method, we have studied the lattice location of Ga atoms in Ge with a concentration ranging from 0.5 at. % down to 0.005 at. %. At Ga concentrations ≤0.05 at.%, all Ga dopants are substitutional directly after ion implantation, without the need for post-implantation thermal annealing. At higher Ga concentrations, a reduction in the EXAFS amplitude is observed, indicating that a fraction of the Ga atoms is located in a defective environment. The local strain induced by the Ga atoms in the Ge matrix is independent of the Ga concentration and extends only to the first nearest neighbor Ge shell, where a 1% contraction in bond length has been measured, in agreement with density functional theory calculations.We acknowledge the support from the Research Foundation Flanders, the epi-team from imec, the KU Leuven GOA 09/06 project, the IUAP program P6/42 and the Australian Research Council. S.C. acknowledges support from OCAS NV by an OCAS-endowed chair at Ghent University

    Analysis of the Reaction Rate Coefficients for Slow Bimolecular Chemical Reactions

    Full text link
    Simple bimolecular reactions A1+A2A3+A4A_1+A_2\rightleftharpoons A_3+A_4 are analyzed within the framework of the Boltzmann equation in the initial stage of a chemical reaction with the system far from chemical equilibrium. The Chapman-Enskog methodology is applied to determine the coefficients of the expansion of the distribution functions in terms of Sonine polynomials for peculiar molecular velocities. The results are applied to the reaction H2+ClHCl+HH_2+Cl\rightleftharpoons HCl+H, and the influence of the non-Maxwellian distribution and of the activation-energy dependent reactive cross sections upon the forward and reverse reaction rate coefficients are discussed.Comment: 11 pages, 5 figures, to appear in vol.42 of the Brazilian Journal of Physic

    Field theory of self-avoiding walks in random media

    Full text link
    Based on the analogy with the quantum mechanics of a particle propagating in a {\em complex} potential, we develop a field-theoretical description of the statistical properties of a self-avoiding polymer chain in a random environment. We show that the account of the non-Hermiticity of the quantum Hamiltonian results in a qualitatively different structure of the effective action, compared to previous studies. Applying the renormalisation group analysis, we find a transition between the weak-disorder regime, where the quenched randomness is irrelevant, and the strong-disorder regime, where the polymer chain collapses. However, the fact that the renormalised interaction constants and the chiral symmetry breaking regularisation parameter flow towards strong coupling raises questions about the applicability of the perturbative analysis.Comment: RevTeX, 9 pages; accepted for publication in J. Phys.

    The relaxation dynamics of a simple glass former confined in a pore

    Full text link
    We use molecular dynamics computer simulations to investigate the relaxation dynamics of a binary Lennard-Jones liquid confined in a narrow pore. We find that the average dynamics is strongly influenced by the confinement in that time correlation functions are much more stretched than in the bulk. By investigating the dynamics of the particles as a function of their distance from the wall, we can show that this stretching is due to a strong dependence of the relaxation time on this distance, i.e. that the dynamics is spatially very heterogeneous. In particular we find that the typical relaxation time of the particles close to the wall is orders of magnitude larger than the one of particles in the center of the pore.Comment: 9 pages of Latex, 4 figure

    Cooperative motion and growing length scales in supercooled confined liquids

    Full text link
    Using molecular dynamics simulations we investigate the relaxation dynamics of a supercooled liquid close to a rough as well as close to a smooth wall. For the former situation the relaxation times increase strongly with decreasing distance from the wall whereas in the second case they strongly decrease. We use this dependence to extract various dynamical length scales and show that they grow with decreasing temperature. By calculating the frequency dependent average susceptibility of such confined systems we show that the experimental interpretation of such data is very difficult.Comment: 7 pages of Latex, 3 figure

    Irreversible Processes in Inflationary Cosmological Models

    Get PDF
    By using the thermodynamic theory of irreversible processes and Einstein general relativity, a cosmological model is proposed where the early universe is considered as a mixture of a scalar field with a matter field. The scalar field refers to the inflaton while the matter field to the classical particles. The irreversibility is related to a particle production process at the expense of the gravitational energy and of the inflaton energy. The particle production process is represented by a non-equilibrium pressure in the energy-momentum tensor. The non-equilibrium pressure is proportional to the Hubble parameter and its proportionality factor is identified with the coefficient of bulk viscosity. The dynamic equations of the inflaton and the Einstein field equations determine the time evolution of the cosmic scale factor, the Hubble parameter, the acceleration and of the energy densities of the inflaton and matter. Among other results it is shown that in some regimes the acceleration is positive which simulates an inflation. Moreover, the acceleration decreases and tends to zero in the instant of time where the energy density of matter attains its maximum value.Comment: 13 pages, 2 figures, to appear in PR
    corecore