283 research outputs found

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors

    Get PDF
    Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement

    A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition

    Get PDF
    Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism both at synaptic and network level

    Limits of Calcium Clearance by Plasma Membrane Calcium ATPase in Olfactory Cilia

    Get PDF
    BACKGROUND: In any fine sensory organelle, a small influx of Ca(2+) can quickly elevate cytoplasmic Ca(2+). Mechanisms must exist to clear the ciliary Ca(2+) before it reaches toxic levels. One such organelle has been well studied: the vertebrate olfactory cilium. Recent studies have suggested that clearance from the olfactory cilium is mediated in part by plasma membrane Ca(2+)-ATPase (PMCA). PRINCIPAL FINDINGS: In the present study, electrophysiological assays were devised to monitor cytoplasmic free Ca(2+) in single frog olfactory cilia. Ca(2+) was allowed to enter isolated cilia, either through the detached end or through membrane channels. Intraciliary Ca(2+) was monitored via the activity of ciliary Ca(2+)-gated Cl(-) channels, which are sensitive to free Ca(2+) from about 2 to 10 microM. No significant effect of MgATP on intraciliary free Ca(2+) could be found. Carboxyeosin, which has been used to inhibit PMCA, was found to substantially increase a ciliary transduction current activated by cyclic AMP. This increase was ATP-independent. CONCLUSIONS: Alternative explanations are suggested for two previous experiments taken to support a role for PMCA in ciliary Ca(2+) clearance. It is concluded that PMCA in the cilium plays a very limited role in clearing the micromolar levels of intraciliary Ca(2+) produced during the odor response

    Endocannabinoids Generated by Ca2+ or by Metabotropic Glutamate Receptors Appear to Arise from Different Pools of Diacylglycerol Lipase

    Get PDF
    The identity and subcellular sources of endocannabinoids (eCBs) will shape their ability to affect synaptic transmission and, ultimately, behavior. Recent discoveries support the conclusion that 2-arachidonoyl glycerol, 2-AG, is the major signaling eCB, however, some important issues remain open. 2-AG can be synthesized by a mechanism that is strictly Ca2+-dependent, and another that is initiated by G-protein coupled receptors (GPCRs) and facilitated by Ca2+. An important question is whether or not the 2-AG in these cases is synthesized by the same pool of diacylglycerol lipase alpha (DAGLα). Using whole-cell voltage-clamp techniques in CA1 pyramidal cells in acute in vitro rat hippocampal slices, we investigated two mechanistically distinct eCB-mediated responses to address this issue. We now report that pharmacological inhibitors of DGLα have quantitatively different effects on eCB-mediated responses triggered by different stimuli, suggesting that functional, and perhaps physical, distinctions among pools of DAGLα exist

    自立的な児童会活動と校内支援システムの構築 ― 委員会活動の活性化を通して ―

    Get PDF
    The 2014 outbreak of Ebola Virus Disease (EVD) in West Africa has presented a significant public health crisis to the international health community and challenged US emergency departments to prepare for patients with a disease of exceeding rarity in developed nations. With the presentation of patients with Ebola to US acute care facilities, ethical questions have been raised in both the press and medical literature as to how US emergency departments, emergency physicians, emergency nurses and other stakeholders in the healthcare system should approach the current epidemic and its potential for spread in the domestic environment. To address these concerns, the American College of Emergency Physicians, the Emergency Nurses Association and the Society for Academic Emergency Medicine developed this joint position paper to provide guidance to US emergency physicians, emergency nurses and other stakeholders in the healthcare system on how to approach the ethical dilemmas posed by the outbreak of EVD. This paper will address areas of immediate and potential ethical concern to US emergency departments in how they approach preparation for and management of potential patients with EVD

    Developmental regulation of CB1-mediated spike-time dependent depression at immature mossy fiber-CA3 synapses

    Get PDF
    Early in postnatal life, mossy fibres (MF), the axons of granule cells in the dentate gyrus, release GABA which is depolarizing and excitatory. Synaptic currents undergo spike-time dependent long-term depression (STD-LTD) regardless of the temporal order of stimulation (pre versus post and viceversa). Here we show that at P3 but not at P21, STD-LTD, induced by negative pairing, is mediated by endocannabinoids mobilized from the postsynaptic cell during spiking-induced membrane depolarization. By diffusing backward, endocannabinoids activate cannabinoid type-1 (CB1) receptors probably expressed on MF. Thus, STD-LTD was prevented by CB1 receptor antagonists and was absent in CB1-KO mice. Consistent with these data, in situ hybridization experiments revealed detectable level of CB1 mRNA in the granule cell layer at P3 but not at P21. These results indicate that CB1 receptors are transiently expressed on immature MF terminals where they counteract the enhanced neuronal excitability induced by the excitatory action of GABA

    A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection

    Get PDF
    Group B streptococcal (GBS) meningitis remains a devastating disease. The absence of an animal model reproducing the natural infectious process has limited our understanding of the disease and, consequently, delayed the development of effective treatments. We describe here a mouse model in which bacteria are transmitted to the offspring from vaginally colonised pregnant females, the natural route of infection. We show that GBS strain BM110, belonging to the CC17 clonal complex, is more virulent in this vertical transmission model than the isogenic mutant BM110∆cylE, which is deprived of hemolysin/cytolysin. Pups exposed to the more virulent strain exhibit higher mortality rates and lung inflammation than those exposed to the attenuated strain. Moreover, pups that survive to BM110 infection present neurological developmental disability, revealed by impaired learning performance and memory in adulthood. The use of this new mouse model, that reproduces key steps of GBS infection in newborns, will promote a better understanding of the physiopathology of GBS-induced meningitis.The authors gratefully acknowledge the help of Encarnaca̧ ̃o Ribeiro for excellent technical assistance, Joana Tavares for assisting with IVIS Lumina LT, Susana Roque for the luminex instrument experiments, the Molecular Microbiology group at i3S for microscope use, and the Portuguese architect and artist Gil Ferreira da Silva for the artworks included in the last figure. This work was supported by funds from Foundation for Science and Technology (FCT), European Regional Development Fund (FEDER) and Compete under project POCI-01-0145-FEDER-016607 (PTDC/IMI-MIC/1049/2014) and from the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). T.S. and A.M. were supported by Investigador FCT (IF/00875/2012 and IF/00753/2014), POPH and Fundo Social Europeu. E.B.A. and C.C.P. hold postdoctoral fellowships from FCT (PTDC/IMI-MIC/1049/2014 and SFRH/BPD/91962/2012). Ar.F. and P.T.C. were supported by Laboratoire d’Excellence (LABEX) Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID).info:eu-repo/semantics/publishedVersio

    Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions

    Get PDF
    The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology

    A new framework for cortico-striatal plasticity: behavioural theory meets In vitro data at the reinforcement-action interface

    Get PDF
    Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem—action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface
    corecore